ngrams-朴素贝叶斯方法分词-python

"""
Code to accompany the chapter "Natural Language Corpus Data"
from the book "Beautiful Data" (Segaran and Hammerbacher, 2009)
http://oreilly.com/catalog/9780596157111/

Code copyright (c) 2008-2009 by Peter Norvig

You are free to use this code under the MIT licencse:
http://www.opensource.org/licenses/mit-license.php
"""

import re, string, random, glob, operator, heapq
from collections import defaultdict
from math import log10

def memo(f):
    "Memoize function f."
    table = {}
    def fmemo(*args):
        if args not in table:
            table[args] = f(*args)
        return table[args]
    fmemo.memo = table
    return fmemo

def test(verbose=None):
    """Run some tests, taken from the chapter.
    Since the hillclimbing algorithm is randomized, some tests may fail."""
    import doctest
    print 'Running tests...'
    doctest.testfile('ngrams-test.txt', verbose=verbose)

################ Word Segmentation (p. 223)

@memo
def segment(text):
    "Return a list of words that is the best segmentation of text."
    if not text: return []
    candidates = ([first]+segment(rem) for first,rem in splits(text))
    return max(candidates, key=Pwords)

def splits(text, L=20):
    "Return a list of all possible (first, rem) pairs, len(first)<=L."
    return [(text[:i+1], text[i+1:])
            for i in range(min(len(text), L))]

def Pwords(words):
    "The Naive Bayes probability of a sequence of words."
    return product(Pw(w) for w in words)

#### Support functions (p. 224)

def product(nums):
    "Return the product of a sequence of numbers."
    return reduce(operator.mul, nums, 1)

class Pdist(dict):
    "A probability distribution estimated from counts in datafile."
    def __init__(self, data=[], N=None, missingfn=None):
        for key,count in data:
            self[key] = self.get(key, 0) + int(count)
        self.N = float(N or sum(self.itervalues()))
        self.missingfn = missingfn or (lambda k, N: 1./N)
    def __call__(self, key):
        if key in self: return self[key]/self.N 
        else: return self.missingfn(key, self.N)

def datafile(name, sep='\t'):
    "Read key,value pairs from file."
    for line in file(name):
        yield line.split(sep)

def avoid_long_words(key, N):
    "Estimate the probability of an unknown word."
    return 10./(N * 10**len(key))

N = 1024908267229 ## Number of tokens

Pw  = Pdist(datafile('count_1w.txt'), N, avoid_long_words)

#### segment2: second version, with bigram counts, (p. 226-227)

def cPw(word, prev):
    "Conditional probability of word, given previous word."
    try:
        return P2w[prev + ' ' + word]/float(Pw[prev])
    except KeyError:
        return Pw(word)

P2w = Pdist(datafile('count_2w.txt'), N)

@memo
def segment2(text, prev='<S>'):
    "Return (log P(words), words), where words is the best segmentation."
    if not text: return 0.0, []
    candidates = [combine(log10(cPw(first, prev)), first, segment2(rem, first))
                  for first,rem in splits(text)]
    return max(candidates)

def combine(Pfirst, first, (Prem, rem)):
    "Combine first and rem results into one (probability, words) pair."
    return Pfirst+Prem, [first]+rem

################ Secret Codes (p. 228-230)

def encode(msg, key):
    "Encode a message with a substitution cipher."
    return msg.translate(string.maketrans(ul(alphabet), ul(key)))

def ul(text): return text.upper() + text.lower()

alphabet = 'abcdefghijklmnopqrstuvwxyz'

def shift(msg, n=13):
    "Encode a message with a shift (Caesar) cipher."
    return encode(msg, alphabet[n:]+alphabet[:n])

def logPwords(words):
    "The Naive Bayes probability of a string or sequence of words."
    if isinstance(words, str): words = allwords(words)
    return sum(log10(Pw(w)) for w in words)

def allwords(text):
    "Return a list of alphabetic words in text, lowercase."
    return re.findall('[a-z]+', text.lower())

def decode_shift(msg):
    "Find the best decoding of a message encoded with a shift cipher."
    candidates = [shift(msg, n) for n in range(len(alphabet))]
    return max(candidates, key=logPwords)

def shift2(msg, n=13):
    "Encode with a shift (Caesar) cipher, yielding only letters [a-z]."
    return shift(just_letters(msg), n)

def just_letters(text):
    "Lowercase text and remove all characters except [a-z]."
    return re.sub('[^a-z]', '', text.lower())

def decode_shift2(msg):
    "Decode a message encoded with a shift cipher, with no spaces."
    candidates = [segment2(shift(msg, n)) for n in range(len(alphabet))]
    p, words = max(candidates)
    return ' '.join(words)

#### General substitution cipher (p. 231-233)

def logP3letters(text):
    "The log-probability of text using a letter 3-gram model."
    return sum(log10(P3l(g)) for g in ngrams(text, 3))

def ngrams(seq, n):
    "List all the (overlapping) ngrams in a sequence."
    return [seq[i:i+n] for i in range(1+len(seq)-n)]

P3l = Pdist(datafile('count_3l.txt'))
P2l = Pdist(datafile('count_2l.txt')) ## We'll need it later

def hillclimb(x, f, neighbors, steps=10000):
    "Search for an x that miximizes f(x), considering neighbors(x)."
    fx = f(x)
    neighborhood = iter(neighbors(x))
    for i in range(steps):
        x2 = neighborhood.next()
        fx2 = f(x2)
        if fx2 > fx:
            x, fx = x2, fx2
            neighborhood = iter(neighbors(x))
    if debugging: print 'hillclimb:', x, int(fx)
    return x

debugging = False

def decode_subst(msg, steps=4000, restarts=90):
    "Decode a substitution cipher with random restart hillclimbing."
    msg = cat(allwords(msg))
    candidates = [hillclimb(encode(msg, key=cat(shuffled(alphabet))),
                            logP3letters, neighboring_msgs, steps)
                  for _ in range(restarts)]
    p, words = max(segment2(c) for c in candidates)
    return ' '.join(words)

def shuffled(seq):
    "Return a randomly shuffled copy of the input sequence."
    seq = list(seq)
    random.shuffle(seq)
    return seq

cat = ''.join

def neighboring_msgs(msg):
    "Generate nearby keys, hopefully better ones."
    def swap(a,b): return msg.translate(string.maketrans(a+b, b+a))
    for bigram in heapq.nsmallest(20, set(ngrams(msg, 2)), P2l):
        b1,b2 = bigram
        for c in alphabet:
            if b1==b2:
                if P2l(c+c) > P2l(bigram): yield swap(c,b1)
            else:
                if P2l(c+b2) > P2l(bigram): yield swap(c,b1)
                if P2l(b1+c) > P2l(bigram): yield swap(c,b2)
    while True:
        yield swap(random.choice(alphabet), random.choice(alphabet))

################ Spelling Correction (p. 236-)

def corrections(text):
    "Spell-correct all words in text."
    return re.sub('[a-zA-Z]+', lambda m: correct(m.group(0)), text)

def correct(w):
    "Return the word that is the most likely spell correction of w."
    candidates = edits(w).items()
    c, edit = max(candidates, key=lambda (c,e): Pedit(e) * Pw(c))
    return c

def Pedit(edit):
    "The probability of an edit; can be '' or 'a|b' or 'a|b+c|d'."
    if edit == '': return (1. - p_spell_error)
    return p_spell_error*product(P1edit(e) for e in edit.split('+'))

p_spell_error = 1./20.

P1edit = Pdist(datafile('count_1edit.txt')) ## Probabilities of single edits

def edits(word, d=2):
    "Return a dict of {correct: edit} pairs within d edits of word."
    results = {}
    def editsR(hd, tl, d, edits):
        def ed(L,R): return edits+[R+'|'+L]
        C = hd+tl
        if C in Pw:
            e = '+'.join(edits)
            if C not in results: results[C] = e
            else: results[C] = max(results[C], e, key=Pedit)
        if d <= 0: return
        extensions = [hd+c for c in alphabet if hd+c in PREFIXES]
        p = (hd[-1] if hd else '<') ## previous character
        ## Insertion
        for h in extensions:
            editsR(h, tl, d-1, ed(p+h[-1], p))
        if not tl: return
        ## Deletion
        editsR(hd, tl[1:], d-1, ed(p, p+tl[0]))
        for h in extensions:
            if h[-1] == tl[0]: ## Match
                editsR(h, tl[1:], d, edits)
            else: ## Replacement
                editsR(h, tl[1:], d-1, ed(h[-1], tl[0]))
        ## Transpose
        if len(tl)>=2 and tl[0]!=tl[1] and hd+tl[1] in PREFIXES:
            editsR(hd+tl[1], tl[0]+tl[2:], d-1,
                   ed(tl[1]+tl[0], tl[0:2]))
    ## Body of edits:
    editsR('', word, d, [])
    return results

PREFIXES = set(w[:i] for w in Pw for i in range(len(w) + 1))

你可能感兴趣的:(python)