Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
Return
[ ["hit","hot","dot","dog","cog"], ["hit","hot","lot","log","cog"] ]
Note:
个人感觉这道题是相当有难度的一道题,它比之前那道Word Ladder 词语阶梯要复杂很多,全场第四低的通过率12.9%正说明了这道题的难度,我也是研究了网上别人的解法很久才看懂,然后照葫芦画瓢的写了出来,下面这种解法的核心思想是BFS,大概思路如下:首先需要把结束词也放入字典,我们的目的是找出所有的路径,我们建立一个路径集paths,用以保存所有路径,然后是起始路径p,在p中先把起始单词放进去。然后定义两个整型变量level,和minLevel,其中level是记录循环中当前路径的长度,minLevel是记录最短路径的长度,这样的好处是,如果某条路径的长度超过了已有的最短路径的长度,那么舍弃,这样会提高运行速度,相当于一种剪枝。还要定义一个set变量words,用来记录已经循环过的路径中的词,然后就是BFS的核心了,循环路径集paths里的内容,取出队首路径,如果该路径长度大于level,说明字典中的有些词已经存入路径了,如果在路径中重复出现,则肯定不是最短路径,所以我们需要在字典中将这些词删去,然后将words清空,对循环对剪枝处理。然后我们取出当前路径的最后一个词,对每个字母进行替换并在字典中查找是否存在替换后的新词,这个过程在之前那道Word Ladder 词语阶梯里面也有。如果替换后的新词在字典中存在,将其加入words中,并在原有路径的基础上加上这个新词生成一条新路径,如果这个新词就是结束词,则此新路径为一条完整的路径,加入结果中,并更新minLevel,若不是结束词,解将新路径加入路径集中继续循环。写了这么多,不知道你看晕了没有,还是看代码吧,这个最有效:
class Solution { public: vector<vector<string> > findLadders(string start, string end, unordered_set<string> &dict) { vector<vector<string> > res; dict.insert(end); vector<string> p; p.push_back(start); queue<vector<string> > paths; paths.push(p); int level = 1, minLevel = INT_MAX; unordered_set<string> words; while (!paths.empty()) { vector<string> path = paths.front(); paths.pop(); if (path.size() > level) { for (string w : words) dict.erase(w); words.clear(); level = path.size(); if (level > minLevel) break; } string last = path.back(); for (int i = 0; i < last.size(); ++i) { string newLast = last; for (char ch = 'a'; ch <= 'z'; ++ch) { newLast[i] = ch; if (dict.find(newLast) != dict.end()) { words.insert(newLast); vector<string> nextPath = path; nextPath.push_back(newLast); if (newLast == end) { res.push_back(nextPath); minLevel = level; } else paths.push(nextPath); } } } } return res; } };
参考资料:
https://leetcode.com/discuss/21902/java-solution-with-iteration
http://yucoding.blogspot.com/2014/01/leetcode-question-word-ladder-ii.html
http://www.scolarart.com/article/?p=516