storm坑之---同步问题

  最近在做一个监控系统,用来监控网站上各个业务功能的调用量以及处理时间,以便及时发现问题,及时处理。做这种实时统计处理系统,自然首先想到了storm,于是现学现用,自然遇到了一些坑,而且不少是网上也难以找到的问题。在这里就做个记录,记录下这个最让我苦恼的错误。

  首先我的业务逻辑是按分钟统计一分钟中的调用次数的数据,所以我在bolt里跑了一个定时器,定时将统计数据发到下一个bolt入库。所在我在定时器执行的代码里调用了OutputCollector发射到下一个bolt。本地调试没啥问题,就部署到外网环境测试。通常也没发现问题,但是偶尔会出现这种错误,作为开发人员最讨厌的就是这种可复现率很低的错误 。

  这里是错误日志:

5675 [Thread-7-disruptor-executor[2 2]-send-queue] ERROR backtype.storm.daemon.executor - 
java.lang.RuntimeException: java.lang.NullPointerException
	at backtype.storm.utils.DisruptorQueue.consumeBatchToCursor(DisruptorQueue.java:128) ~[storm-core-0.9.3.jar:0.9.3]
	at backtype.storm.utils.DisruptorQueue.consumeBatchWhenAvailable(DisruptorQueue.java:99) ~[storm-core-0.9.3.jar:0.9.3]
	at backtype.storm.disruptor$consume_batch_when_available.invoke(disruptor.clj:80) ~[storm-core-0.9.3.jar:0.9.3]
	at backtype.storm.disruptor$consume_loop_STAR_$fn__1460.invoke(disruptor.clj:94) ~[storm-core-0.9.3.jar:0.9.3]
	at backtype.storm.util$async_loop$fn__464.invoke(util.clj:463) ~[storm-core-0.9.3.jar:0.9.3]
	at clojure.lang.AFn.run(AFn.java:24) [clojure-1.5.1.jar:na]
	at java.lang.Thread.run(Thread.java:722) [na:1.7.0_15]
Caused by: java.lang.NullPointerException: null
	at clojure.lang.RT.intCast(RT.java:1087) ~[clojure-1.5.1.jar:na]
	at backtype.storm.daemon.worker$mk_transfer_fn$fn__3549.invoke(worker.clj:129) ~[storm-core-0.9.3.jar:0.9.3]
	at backtype.storm.daemon.executor$start_batch_transfer__GT_worker_handler_BANG_$fn__3283.invoke(executor.clj:258) ~[storm-core-0.9.3.jar:0.9.3]
	at backtype.storm.disruptor$clojure_handler$reify__1447.onEvent(disruptor.clj:58) ~[storm-core-0.9.3.jar:0.9.3]
	at backtype.storm.utils.DisruptorQueue.consumeBatchToCursor(DisruptorQueue.java:125) ~[storm-core-0.9.3.jar:0.9.3]
	... 6 common frames omitted
	
	
5697 [Thread-7-disruptor-executor[2 2]-send-queue] ERROR backtype.storm.util - Halting process: ("Worker died")
java.lang.RuntimeException: ("Worker died")
	at backtype.storm.util$exit_process_BANG_.doInvoke(util.clj:325) [storm-core-0.9.3.jar:0.9.3]
	at clojure.lang.RestFn.invoke(RestFn.java:423) [clojure-1.5.1.jar:na]
	at backtype.storm.daemon.worker$fn__3808$fn__3809.invoke(worker.clj:452) [storm-core-0.9.3.jar:0.9.3]
	at backtype.storm.daemon.executor$mk_executor_data$fn__3274$fn__3275.invoke(executor.clj:240) [storm-core-0.9.3.jar:0.9.3]
	at backtype.storm.util$async_loop$fn__464.invoke(util.clj:473) [storm-core-0.9.3.jar:0.9.3]
	at clojure.lang.AFn.run(AFn.java:24) [clojure-1.5.1.jar:na]
	at java.lang.Thread.run(Thread.java:722) [na:1.7.0_15]

  如果你也遇到这个问题,相信你第一次看到这个错误一定很痛苦,因为错误日志中没有任何与自己的业务代码相关的记录。所以实在是无从定位问题的所在。痛苦至极的是复现还不那么容易。

  经过我多次猜测尝试,终于测出了问题的所在。下面我先贴出一个会报这个错误的例子代码:

public class Main {

	public static void main(String[] args) {
		TopologyBuilder builder = new TopologyBuilder();
		builder.setSpout("spout",new TestWordSpout());
		
		builder.setBolt("dispatch", new WordDispatchBolt()).shuffleGrouping("spout");
		builder.setBolt("print",new PrintBolt()).fieldsGrouping("dispatch", new Fields("word"));
        
		Config conf = new Config();
		
		conf.setDebug(false);
		conf.setNumWorkers(1);
		//conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
		LocalCluster cluster = new LocalCluster();
		cluster.submitTopology("test-kafka-1", conf, builder.createTopology());
	}

}

  

public class TestWordSpout extends BaseRichSpout {
   
  private static final long serialVersionUID = 1L;
    boolean _isDistributed;
    SpoutOutputCollector _collector;
    String[] words = new String[] {"nathan", "mike", "jackson", "golda", "bertels"};
    public TestWordSpout() {
        this(true);
    }

    public TestWordSpout(boolean isDistributed) {
        _isDistributed = isDistributed;
    }
        
    public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
        _collector = collector;
    }
    
    public void close() {
        
    }
        
    public void nextTuple() {
        Utils.sleep(1000);
        final Random rand = new Random();
        final String word = words[rand.nextInt(words.length)];
        _collector.emit(new Values(word), word+new Random().nextDouble());
    }
    
    public void ack(Object msgId) {
    	System.out.println("### ack:"+msgId);
    }

    public void fail(Object msgId) {
        System.out.println("### fail:"+msgId);
    }
    
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word"));
    }

  

public class WordDispatchBolt extends BaseRichBolt{

	private OutputCollector collector;
	
	@Override
	public void prepare(Map stormConf, TopologyContext context,
			OutputCollector collector) {
		this.collector = collector;
		
		new Thread(new Runnable() {
			
			@Override
			public void run() {
				while(true){
					send();//不做sleep休眠,否则抛出此异常的几率太小,不容易观察到
				}
			}
		}).start();
	}

	public void send(){
		this.collector.emit(new Values(new Random().nextDouble()));
	}
	@Override
	public void execute(Tuple input) {
		String word = input.getStringByField("word");
		this.collector.emit(new Values(word));
		this.collector.ack(input);
	}

	@Override
	public void declareOutputFields(OutputFieldsDeclarer declarer) {
		declarer.declare(new Fields("word"));
	}
	
}

  

public class PrintBolt extends BaseRichBolt {

	private static final long serialVersionUID = 1L;

	@Override
	public void prepare(Map stormConf, TopologyContext context,
			OutputCollector collector) {
	}

	@Override
	public void execute(Tuple input) {
		System.out.println(input.getValue(0));
	}

	@Override
	public void declareOutputFields(OutputFieldsDeclarer declarer) {
		
	}


}

  这个代码很简单,就不做详细介绍了。在WordDispatchBolt类里我启动了另一个线程来发射数据到下一个bolt。我的业务代码中与此类似,是通过Timer定时发送数据的(Timer底层其实也是线程,就不多说了)。但是Timer是按分钟调用的,所以出现问题的几率小的可怜,这里我故意零停顿的调用,让此异常发生的几率更大一些。 

  如果运行以上例子代码,你也肯定遇到前边贴出的错误异常。如果不知道是OutputCollector的同步问题,相信解决起来绝对让人痛不欲生。既然知道了是同步问题,要么避免在别的线程里调用collector,要么改成同步的。以下是我简单想到的解决方案。(如果有大神还有更好的,希望留言指教)

  对WordDispatchBolt类做如下修改:

public class WordDispatchBolt extends BaseRichBolt{

	private OutputCollector collector;
	
	@Override
	public void prepare(Map stormConf, TopologyContext context,
			OutputCollector collector) {
		this.collector = collector;
		
		new Thread(new Runnable() {
			
			@Override
			public void run() {
				while(true){
					send(new Values(new Random().nextDouble()));//不做sleep休眠,否则抛出此异常的几率太小,不容易观察到
				}
			}
		}).start();
	}

	public synchronized void send(List<Object> tuple){
		this.collector.emit(tuple);
	}
	@Override
	public void execute(Tuple input) {
		String word = input.getStringByField("word");
		send(new Values(word));
		this.collector.ack(input);
	}

	@Override
	public void declareOutputFields(OutputFieldsDeclarer declarer) {
		declarer.declare(new Fields("word"));
	}
	
}

 

  到这里,这个坑算是基本得到解决了。之后可能还要大量使用到storm,遇到坑是再做记录。

 

  ”把遇到的坑记录下来,让后遇到者可以有更多的网络资源查询,以减少排查问题的时间和纠结“

 

 

  

 

 

你可能感兴趣的:(storm)