机器学习(周志华) 西瓜书 第三章课后习题3.3—— Python实现

机器学习(周志华) 西瓜书 第三章课后习题3.3—— Python实现

个人原创,禁止转载——Zetrue_Li

复制下列数据并粘贴到记事本,保存为data.txt:

编号,色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率,好瓜
1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,0.697,0.46,是
2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,0.774,0.376,是
3,乌黑,蜷缩,浊响,清晰,凹陷,硬滑,0.634,0.264,是
4,青绿,蜷缩,沉闷,清晰,凹陷,硬滑,0.608,0.318,是
5,浅白,蜷缩,浊响,清晰,凹陷,硬滑,0.556,0.215,是
6,青绿,稍蜷,浊响,清晰,稍凹,软粘,0.403,0.237,是
7,乌黑,稍蜷,浊响,稍糊,稍凹,软粘,0.481,0.149,是
8,乌黑,稍蜷,浊响,清晰,稍凹,硬滑,0.437,0.211,是
9,乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0.666,0.091,否
10,青绿,硬挺,清脆,清晰,平坦,软粘,0.243,0.267,否
11,浅白,硬挺,清脆,模糊,平坦,硬滑,0.245,0.057,否
12,浅白,蜷缩,浊响,模糊,平坦,软粘,0.343,0.099,否
13,青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0.639,0.161,否
14,浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0.657,0.198,否
15,乌黑,稍蜷,浊响,清晰,稍凹,软粘,0.36,0.37,否
16,浅白,蜷缩,浊响,模糊,平坦,硬滑,0.593,0.042,否
17,青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0.719,0.103,否

Python代码:

# 对率回归 西瓜数据集3.0ɑ
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

def loadData(filename):
    dataSet = pd.read_csv(filename)
    return dataSet

def processData(dataSet):
	dataSet['b'] = 1
	x = np.array(dataSet[['密度', '含糖率', 'b']])
	y = np.array(dataSet[['好瓜']].replace(['是', '否'], [1, 0]))

	return x, y

def p0_function(xi, beta):
	return 1 - p1_function(xi, beta)

def p1_function(xi, beta):
	beta_T_x = np.dot(beta.T, xi)
	exp_beta_T_x = np.exp(beta_T_x)
	return exp_beta_T_x  / (1+exp_beta_T_x)

def l_function(beta, x, y):
	#计算当前3.27式的l值
	result = 0
	for xi, yi in zip(x, y):
		xi = xi.reshape(xi.shape[0], 1)
		# beta.T与x相乘, beta_T_x表示β转置乘以x
		beta_T_x = np.dot(beta.T, xi)
		exp_beta_T_x = np.exp(beta_T_x)
		result += -yi*beta_T_x + np.log(1+exp_beta_T_x)

	return result

def run(x, y, iterate=100):
	#定义初始参数
	#β列向量
	beta = np.zeros((x.shape[1], 1))
	beta[-1] = 1 
	old_l = 0 #3.27式l值的记录,这是上一次迭代的l值

	cur_iter = 0
	while cur_iter < iterate:
		cur_iter += 1

		cur_l = l_function(beta, x, y)
		# 迭代终止条件
		if np.abs(cur_l - old_l) <= 10e-5:
			# 精度,二者差在0.00001以内就认为收敛
			# 满足条件直接跳出循环
			break               

		# print(cur_l)
		old_l = cur_l

		d1_beta, d2_beta = 0, 0
		# 牛顿迭代法更新β
		for xi, yi in zip(x, y):
			xi = xi.reshape(xi.shape[0], 1)
			p1 = p1_function(xi, beta)

			# 求关于β的一阶导数
			d1_beta -= np.dot(xi, yi-p1)

			# 求关于β的一阶导数
			d2_beta += np.dot(xi, xi.T) * p1 * (1-p1)
		
		#print(beta)
		try:
			beta = beta - np.dot(np.linalg.inv(d2_beta), d1_beta)
		except Exception as e:
			break

	return beta

def test(beta, x, y):
	for xi, yi in zip(x, y):
		xi = xi.reshape(xi.shape[0], 1)
		beta_T_x = np.dot(beta.T, xi)
		y_test = np.exp(beta_T_x)
		print(yi, y_test)


if __name__=="__main__":
    # 读取数据
    filename = 'data.txt'
    dataSet = loadData(filename)
    
    # 预处理数据
    x, y =  processData(dataSet)
    beta = run(x, y)

    accuracy = 0
    for xi, yi in zip(x, y):
    	p1 = p1_function(xi, beta)
    	judge = 0 if p1 < 0.5 else 1

    	# print(yi[0], judge)

    	accuracy += (judge == yi[0])

    error = 1 - accuracy/dataSet.shape[0]
    print('Error:', error*100, '%')

实现结果:

错误率:

机器学习(周志华) 西瓜书 第三章课后习题3.3—— Python实现_第1张图片

你可能感兴趣的:(机器学习(周志华) 西瓜书 第三章课后习题3.3—— Python实现)