- 西瓜书学习笔记——低维嵌入(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍低维嵌入(Low-DimensionalEmbedding)是一种降低高维数据维度的技术,目的是在保留数据特征的同时减少数据的复杂性。这种技术常用于可视化、特征学习、以及数据压缩等领域。低维嵌入的目标是将高维数据映射到一个低维空间,以便更好地理解和可视化数据。在kkk近邻学习中,随着数据维度的增加,样本之间的距离变得更加稀疏,导致KNN算法性能下降。这是因为在高维空
- 西瓜书学习笔记——核化线性降维(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍核化线性降维是一种使用核方法(KernelMethods)来进行降维的技术。在传统的线性降维方法中,例如主成分分析(PCA)和线性判别分析(LDA),数据被映射到一个低维线性子空间中。而核化线性降维则通过使用核技巧,将数据映射到一个非线性的低维空间中。核技巧的核心思想是通过一个非线性映射将原始数据转换到一个高维的特征空间,然后在该特征空间中应用线性降维方法。这种映射
- 西瓜书学习笔记——k近邻学习(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍K最近邻(K-NearestNeighbors,KNN)是一种常用的监督学习算法,用于分类和回归任务。该算法基于一个简单的思想:如果一个样本在特征空间中的kkk个最近邻居中的大多数属于某个类别,那么该样本很可能属于这个类别。KNN算法不涉及模型的训练阶段,而是在预测时进行计算。以下是KNN算法的基本步骤:选择K值:首先,确定用于决策的邻居数量K。K的选择会影响算法的
- 西瓜书学习笔记——主成分分析(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习降维
文章目录算法介绍实验分析算法介绍主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术,用于在高维数据中发现最重要的特征或主成分。PCA的目标是通过线性变换将原始数据转换成一组新的特征,这些新特征被称为主成分,它们是原始特征的线性组合。对于一个正交属性空间(各个属性之间是线性无关的)中的样本点,存在以下两个性质的超平面可对所有样本点进行恰当的表达:最近重构性
- 西瓜书学习笔记——层次聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录算法介绍实验分析算法介绍层次聚类是一种将数据集划分为层次结构的聚类方法。它主要有两种策略:自底向上和自顶向下。其中AGNES算法是一种自底向上聚类算法,用于将数据集划分为层次结构的聚类。算法的基本思想是从每个数据点开始,逐步合并最相似的簇,直到形成一个包含所有数据点的大簇。这个过程被反复执行,构建出一个层次化的聚类结构。这其中的关键就是如何计算聚类簇之间的距离。但实际上,每个簇都是一个集合
- 西瓜书学习笔记——密度聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录算法介绍实验分析算法介绍密度聚类是一种无监督学习的聚类方法,其目标是根据数据点的密度分布将它们分组成不同的簇。与传统的基于距离的聚类方法(如K均值)不同,密度聚类方法不需要预先指定簇的数量,而是通过发现数据点周围的密度高度来确定簇的形状和大小。我们基于DBSCAN算法来实现密度聚类。DBSCAN是基于一组邻域参数(ϵ,MinPts)(\epsilon,MinPts)(ϵ,MinPts)来刻
- 【机器学习·西瓜书学习笔记·线性模型】线性回归——最小二乘法(least square method)
慈善区一姐
机器学习学习线性回归
线性模型的基本形式给定由个属性描述的实例,其中是在第个属性上的取值,线性模型(linearmodel)试图学得一个通过属性的线性组合来进行预测的函数,即一般用向量形式写成:和确定后,模型就得以确定参数查阅表把数据集表示为一个m*(d+1)大小的矩阵,其中每行对应于一个实例,每行前d个元素对应于实例的d个属性值,最后一个元素恒置于1,即(一)均方误差(meansquarederror)基于欧几里得距
- 西瓜书学习笔记——原型聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录k均值算法算法介绍实验分析学习向量量化(LVQ)算法介绍实验分析高斯混合聚类算法介绍实验分析总结k均值算法算法介绍给定样本集D={x1,x2,...,xm}D=\{x_1,x_2,...,x_m\}D={x1,x2,...,xm},k均值算法针对聚类算法所得簇划分C={C1,C2,...,Ck}\mathcal{C}=\{C_1,C_2,...,C_k\}C={C1,C2,...,Ck}最
- 西瓜书学习笔记——Boosting(公式推导+举例应用)
Nie同学
机器学习学习笔记boosting
文章目录引言AdaBoost算法AdaBoost算法正确性说明AdaBoost算法如何解决权重更新问题?AdaBoost算法如何解决调整下一轮基学习器样本分布问题?AdaBoost算法总结实验分析引言Boosting是一种集成学习方法,旨在通过整合多个弱学习器来构建一个强学习器。其核心思想是迭代训练模型,关注之前被错误分类的样本,逐步提升整体性能。Boosting的代表算法包括AdaBoost、G
- 【DW 11月-西瓜书学习笔记】Task01:绪论、模型评估与选择
以身外身做梦中梦
第一章绪论让我们的机器学习之旅从挑选一个好瓜开始。只绪论介绍基本术语、机器学习的发展,我只记录一些特殊的术语。1.1机器学习的定义计算机通过学习经验数据得到模型,面对新情况时做出有效判断。还有一种解释:假设:P:计算机程序在某任务类T上的性能。T:计算机程序希望实现的任务类。E:表示经验,即历史的数据集。若该计算机程序通过利用经验E在任务T上获得了性能P的改善,则称该程序对E进行了学习。1.2机器
- 【机器学习】西瓜书学习笔记(一)
hypc9709
机器学习人工智能分类
最近开始机器学习经典教材-西瓜书的学习,为了方便以后查看,在此记录下来。什么是机器学习通过计算的手段,利用经验来改善系统性能。机器学习所研究的内容,是如何在计算机上从数据中产生模型的算法,即“学习算法”。机器学习任务划分根据训练样本是否有标签,可分为:监督学习分类:预测离散值,如二分类任务回归:预测连续值无监督学习聚类:训练样本没有标记信息,通过了解数据内在规律自动分类,常用于数据分析学习效果的评
- 西瓜书学习笔记(2021-12-28开始,进行中)
N刻后告诉你
读书笔记机器学习
西瓜书1绪论1.1引言1.2基本术语1.3假设空间1.4归纳偏好2模型评估与选择2.1经验误差与过拟合1绪论1.1引言机器学习致力于研究“如何通过计算的方式,利用数据(经验)来改善系统自身的性能”。机器学习形式化的定义:假设用PPP来评估计算机程序在某任务类上的性能,若一个程序通过利用经验EEE在TTT中任务上获得了性能改善,则我们就说关于TTT和PPP,该程序对EEE进行了学习1.2基本术语数据
- 西瓜书学习笔记7-贝叶斯分类器
weixin_41872340
西瓜书
chapter7贝叶斯分类器7.1贝叶斯决策论贝叶斯决策论是概率框架下实施决策的基本方法,对分类任务来说,在所有相关概率都已知的理想情形下,贝叶斯决策论考虑如何基于概率和误判损失来选择最优的类别标记,以多分类为例解释原理:假设分类问题有N种可能的类别,λij是将真实标记为j的样本误分类为i所产生的损失,基于==后验概率P(ci丨x)==可获得将样本x分类为ci所产生的期望损失,即在样本x上的“条件
- 西瓜书学习笔记day2
机智的冷露
西瓜书学习笔记学习深度学习机器学习
模型评估与选择一、经验误差与过拟合错误率:分类错误的样本数占样本总数的比例。在m个样本中共有a个样本分类错误,则错误率E=a/m。精度:1-a/m误差:学习器实际预测输入与样本的真实输出之间的差异定义为误差。在训练集中的误差被称为训练误差,在新样本上的误差被称为泛化误差。过拟合:当学习器把训练样本学的“太好了”的时候,很可能会把训练样本的特性当作所有潜在样本所拥有的共性,从而模型的泛化性能下降,这
- 西瓜书学习笔记day1
机智的冷露
西瓜书学习笔记学习机器学习算法
一、基本术语①示例/样本:对一个事件或对象的描述,也被称为一个特征向量。②属性:反映事件或者对象在某方面的表现或性质的事项。③属性值:属性的取值④属性空间/样本空间:属性张成的空间⑤数据集:样本的集合⑥维数:令D={x1,x2…xm}表示包含m个示例的数据集,每个示例由d个属性描述,则每个示例xi=(xi1,xi2,xi3…xid)是d维样本空间X上的一个向量。d称为样本空间的“维数”⑦训练/学习
- 西瓜书学习笔记(第一章)
丿October
二狗编程入门之路机器学习
基本术语数据集(dataset):所有数据的集合样本(sample):描述某个事件或对象的记录属性(attribute):事件或对象的某个性质属性值(attributevalue):性质的取值属性空间(attributespace):性质所有取值的集合特征向量(featurevector):由多个性质组成的一条记录训练数据(trainingdata):训练过程中使用的数据训练样本(training
- 西瓜书学习笔记 第1章 绪论
二三TP
读书笔记机器学习
目录第1章绪论1.3假设空间1.4归纳偏好参考文献本文仅针对个人不熟知识点进行整理,已知内容或过于简单的就不整理了。第1章绪论1.3假设空间假设空间:所有假设组成的空间版本空间:现实问题中我们常面临很大的假设空间,但学习过程是基于有限样本训练集进行的,因此,可能有多个假设与训练集一致,即存在着一个与训练集一致的假设集合,我们称之为版本空间(versionspace)。也就是说这多个假设的集合就是假
- 西瓜书学习笔记 第二章
程序圆圆圆
机器学习
2.1经验误差与过拟合m个样本中有a个样本分类错误错误率(errorrate):E=a/m精度(accuracy)=1-错误率=1-E=1-a/m误差(误差期望):学习器的预测输出与样本的真实输出的差异;训练误差(trainingerror)或经验误差(empiricalerror):学习器在训练集上的误差;泛化误差(generalizationerror):学习器在新样本上的误差。泛化性能过拟合
- 西瓜书学习笔记第九章聚类
UEVOLIshy
西瓜书学习笔记聚类西瓜书第九章
文章目录1知识脉络2内容补充9.1节聚类任务9.2节性能度量9.3节距离计算9.4节原型聚类9.4.1k均值算法9.4.2学习向量量化9.4.3高斯混合聚类9.5节密度聚类9.6节层次聚类9.7节阅读材料3课后题4代码实现5参考1知识脉络2内容补充9.1节聚类任务9.2节性能度量9.3节距离计算9.4节原型聚类9.4.1k均值算法9.4.2学习向量量化9.4.3高斯混合聚类9.5节密度聚类9.6节
- 西瓜书学习笔记-第二章 模型评估与选择
Dove_Dan
西瓜书笔记机器学习
第二章模型评估与选择2.1经验误差与过拟合错误率(errorrate):分类错误的样本数占样本总数的比例m个样本中有a个样本分类错误,则错误率E=a/m1-a/m称为精度(accuracy),即精度=1-错误率,精度常写为百分比形式误差(error):学习器的实际预测输出与样本的真实输出之间的差异学习器在训练集上的误差称为“训练误差”(trainingerror)/“经验误差”(empirical
- 西瓜书学习笔记(第一、二章)
weixin_44613018
学习笔记学习
本博客是用来记录个人认为的重要的知识点,但因为知识点繁多而复杂,因此大多数情况下知识在这里列一个提纲,或者在这里写自己的理解第一章绪论(此部分来自南瓜书)一些概念“算法”产出的结果称为“模型”,通常是具体的函数或者可抽象地看作为函数样本:也称为“示例”,是关于一个事件或对象的描述,一般是把事物或对象抽象为某种数学形式,常见于抽象成线性代数中的向量(因为任何事物都可以由若干“特征”——或称为“属性”
- 【机器学习——线性模型】
只想快乐
笔记机器学习
机器学习——线性模型西瓜书学习笔记广义线性模型对数几率回归多分类学习西瓜书学习笔记广义线性模型广义线性模型通过单调可微函数(联系函数linkfunction)将数据的真实标记y与线性回归模型的预测值联系起来:y=g-1(wTx+b)对数几率回归对数几率回归中采用的是对数几率函数(logisticfunction)作为广义线性模型中的联系函数。对数几率函数:y=1/(1+e-x)多分类学习OVR(每
- 西瓜书学习笔记——第十六章:强化学习
Andrewings
西瓜书学习笔记
16.强化学习16.强化学习16.1任务与奖赏16.2K摇摆赌博机16.2.1ε-贪心16.2.2Softmax16.3有模型学习16.3.1策略评估16.3.2策略改进16.3.3策略迭代与值迭代16.4免模型学习蒙特卡罗强化学习16.5模仿学习16.强化学习强化学习是机器学习的一个重要分支。在强化学习中包含两种基本元素:状态与动作,在某个状态下执行某种动作,这便是一种策略。学习器要做的是不断地
- 西瓜书学习笔记——task01
zhaoaxi
学习python
西瓜书学习笔记第一章基本术语数据集:所有瓜样本/示例:一个瓜的描述(属性描述)属性:瓜皮颜色属性值:青绿属性空间"(attributespace)/“样本空间”(samp1espace)/“输入空间:属性张成的空间(比如"色泽”“根蒂”"敲声"作为三个坐标轴,则它们张成一个用于描述西瓜的三维空间)特征向量:在属性空间的一个点,对应一个示例维数:属性数量样例:有标记“好瓜”的瓜真相/真实:学得的模型
- 西瓜书学习笔记——第十三章:半监督学习
Andrewings
西瓜书学习笔记西瓜书机器学习半监督
13.半监督学习13.1未标记样本13.2生成式方式高斯混合生成式模型其他生成式模型13.3半监督SVMTSVM半监督支持向量机13.4基于分歧的方法13.5半监督聚类约束k均值算法(必连勿连)约束种子k均值算法(少量有标记样本)13.1未标记样本训练样本集D由有标记样本集DlD_lDl和未标记样本集DuD_uDu组成,若使用传统监督学习算法,则只能使用DlD_lDl,DuD_uDu的信息被浪费,
- 机器学习——西瓜书学习笔记(1)绪论
Charcy阳
python机器学习人工智能深度学习神经网络
文章目录**1.1引言1.2基本术语(极其重要)1.3假设空间1.4归纳偏好1.5发展历程1.6应用现状1.7习题1.1引言机器学习(machinelearning)的定义:它致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。在计算机系统中,“经验”通常以“数据”的形式存在。ML研究的主要内容:在计算机上、从数据中产生“模型model”的算法。即是:如何通过数据集产生模型?因此机器学习本
- 西瓜书学习笔记第2章(模型评估与选择)
旋转的油纸伞
西瓜书-机器学习(学习笔记)机器学习面试
西瓜书学习笔记第2章(模型评估与选择)2.1经验误差与过拟合2.2评估方法2.2.1留出法(hold-out)2.2.2交叉验证法(crossvalidation)2.2.3自助法(bootstrapping)2.2.4调参与最终模型2.3性能度量(performancemeasure)2.3.1错误率与精度2.3.2查准率、查全率与F12.3.3ROC与AUC2.3.4代价敏感错误率与代价曲线2
- 周志华西瓜书学习笔记----绪论
Ω2πA 》
学习机器学习深度学习
文章目录前言一、算法处理数据的流程二、假设空间是什么?三、归纳偏好前言这篇文章将记录西瓜书中绪论的学习。一、算法处理数据的流程在我们训练一个模型前我们需要准备一些数据,训练集是历史数据。当我们有一批新的数据时(测试集),我们将这些数据输入训练过的模型来得到每个数据对应的标签。二、假设空间是什么?在我们使用数据集进行机器学习时,我们能用到的数据是有限的,而我们需要利用有限的数据通过算法拟合出一个能够
- 西瓜书学习笔记——第十一章:特征选择与稀疏学习
Andrewings
西瓜书学习笔记特征选取稀疏学习特征工程
第十一章:特征选择与稀疏学习11.1子集搜索与评价子集搜索特征子集评价11.2过滤式选择Relief的相关统计量11.3包裹式选择拉斯维加斯方法和蒙特卡罗方法:11.4嵌入式选择与L1正则化11.5稀疏表示与字典学习稀疏性11.6压缩感知11.1子集搜索与评价一般情况下,我们可以用很多属性/特征描述一个示例,而对于特定的学习任务,我们会发现已知的所有属性中,有些特征是与该学习任务的目标无关的(如预
- 【西瓜书学习笔记】第5章 神经网络
爱学习的猫fly
神经网络人工智能深度学习
1.M-P神经元模型2.感知机由两层神经元组成,输入层接收外界输入信号后传递给输出层,输出层是M-P神经元,亦称“阈值逻辑单元”,感知机能容易的实际逻辑与、或、非运算,即可以解决线性可分的问题,实现不了异或运算,即无法解决非线性可分问题3.多层前馈神经网络多个神经元构成的神经网络能够分类线性不可分的数据集,且有理论证明(通用近似定理):只需一个包含足够多神经元的隐层,多层前馈网络(最经典的神经网络
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc