参考:
https://www.youtube.com/watch?v=lLM8oAsi32g
import cv2
import numpy as np
def random_colors(N):
np.random.seed(1)
colors=[tuple(255*np.random.rand(3)) for _ in range(N)]
return colors
def apply_mask(image, mask, color, alpha=0.5):
"""Apply the given mask to the image.
"""
for n, c in enumerate(color):
image[:, :, n] = np.where(
mask == 1,
image[:, :, n] *(1 - alpha) + alpha * c,
image[:, :, n]
)
return image
def display_instances(image,boxes,masks,ids,names,scores):
n_instances=boxes.shape[0]
if not n_instances:
print('No instances to display')
else:
assert boxes.shape[0] == masks.shape[-1] == ids.shape[0]
colors=random_colors(n_instances)
height, width = image.shape[:2]
for i,color in enumerate(colors):
if not np.any(boxes[i]):
continue
y1,x1,y2,x2=boxes[i]
mask=masks[:,:,i]
image=apply_mask(image,mask,color)
image=cv2.rectangle(image,(x1,y1),(x2,y2),color,2)
label=names[ids[i]]
score=scores[i] if scores is not None else None
caption='{}{:.2f}'.format(label,score) if score else label
image=cv2.putText(
image,caption,(x1,y1),cv2.FONT_HERSHEY_COMPLEX,0.7,color,2
)
return image
if __name__=='__main__':
import os
import sys
import random
import math
import skimage.io
import time
import utils
#import model as modellib
ROOT_DIR = os.path.abspath("../")
sys.path.append(ROOT_DIR)
from mrcnn import utils
import mrcnn.model as modellib
sys.path.append(os.path.join(ROOT_DIR, "samples/coco/")) # To find local version
import coco
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
if not os.path.exists(COCO_MODEL_PATH):
print('cannot find coco_model')
class InferenceConfig(coco.CocoConfig):
GPU_COUNT = 1
IMAGES_PER_GPU = 1
config = InferenceConfig()
config.display()
model = modellib.MaskRCNN(
mode="inference", model_dir=MODEL_DIR, config=config
)
# Load weights trained on MS-COCO
model.load_weights(COCO_MODEL_PATH, by_name=True)
class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush']
capture=cv2.VideoCapture(0)
capture.set(cv2.CAP_PROP_FRAME_WIDTH,1920)
capture.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)
while True:
ret,frame=capture.read()
results=model.detect([frame],verbose=0)
r=results[0]
frame=display_instances(
frame,r['rois'], r['masks'], r['class_ids'],
class_names, r['scores']
)
cv2.imshow('frame',frame)
if cv2.waitKey(1)&0xFF==ord('q'):
break
capture.release()
cv2.destroyAllWindows()
检测结果:
有点卡顿,毕竟检测是每秒5帧,5FPS