【Mask R-CNN】(六):搭建环境训练coco数据集

1. 首先克隆mask r-cnn的代码仓库。

git clone [email protected]:matterport/Mask_RCNN.git

2. 安装依赖项。

cd Mask_RCNN
pip3 install -r requirements.txt

3. build。

python3 setup.py install

4. 下载预训练模型mask_rcnn_coco.h5,点击下载。

5. 安装pycocotools,请参考链接:安装pycocotools。

6. 修改参数。因为coco数据集图像尺寸较大,所以在训练coco数据集时,我将samples/coco/coco.py中的IMAGES_PER_GPU修改为1(原代码中设置为2,在我的机器上会out of memory),我只有一个GPU,所以GPU_COUNT也修改为1。

7. 开始训练。如果没有提前下载coco数据集,需要将--download设为True。

python samples/coco/coco.py train --dataset=your/data/path/ --model=coco --download=True

【Mask R-CNN】(六):搭建环境训练coco数据集_第1张图片

对于过程中可能出现的问题请参考下列博客:

Mask R-CNN学习(二): 'keras.engine.topology' has no attribute 'load_weights_from_hdf5_group_by_name'

Mask R-CNN学习(三):windows下 cl: 命令行 error D8021 :无效的数值参数“/Wno-cpp”的解决办法

Mask R-CNN学习(四):UserWarning: Anti-aliasing will be enabled by default in skimage 0.15的解决办法

Mask R-CNN学习(五):floating point exception(core dumped)的解决办法

你可能感兴趣的:(深度学习,tensorflow,Mask,RCNN)