题意:要集齐n种卡片,现已知每打开一袋方便面得到每种卡片的概率Pi,Pi的和小于等于1,求集齐这n种卡片需要买的方便面的期望。
分析:
一、期望dp,这题要用二进制压缩,这是很显然的。
状态:dp[i]现在已经收集了i种卡片到达收集所有卡片的期望。这个状态能转移到的状态有:1).dp[i](下次打开的方便面得到的卡片是已经收集过的);2).dp[i|(1<
所以方程:dp[i]=Pi * dp[i] + Pj * dp[i|(1<
实现:从后往前,从最后一个状态的前一个开始往前推,结果就输出dp[0]
二、容斥原理
1/pi是把第i种卡片单独看,收集到它的期望,但是把所有的卡片单独的期望加起来是不对的,因为他们的期望有交叉的地方,所以要减去1/(pi+pj),很好理解,就是两个集合重叠的部分,那么为什么是相加呢,分析一下这个重叠部分:应该是得A不得B,或者得B不得A,由于不可能既得A又得B,所以刚才那两种情况的概率就是Pa+Pb,以此类推。
dp代码:
#include
#include
using namespace std;
int n;
double p[30],dp[1<<21];
int main()
{
while(cin>>n){
double q=1.0;
for(int i=0;i>p[i];
q-=p[i];
}
memset(dp,0,sizeof(dp));
for(int i=(1<=0;i--){
double pp=q;
for(int j=0;j
容斥原理代码:
#include
#include
using namespace std;
int main()
{
int n;
double a[30];
while(cin>>n){
double s=0;
for(int i=0;i>a[i];
for(int i=1;i<(1<
你可能感兴趣的:(ACM,训练,概率dp)
- 图像处理:模拟色差的生成
何以为皇
图像处理人工智能
图像处理:模拟色差的实战案例在做瓷砖瑕疵检测的过程中,需要检测色差。但在实际生产环境中,瓷砖色差检测的数据量较少,无法直接获取足够的数据来训练和优化深度学习模型。于是就考虑通过人为生成色差数据的方式来扩充数据集,进行色差的模拟。1.什么是色差?色差(ColorDifference)是指两种颜色之间的视觉差异。在色彩科学中,CIEDE2000是目前最先进的色差计算方法之一。然而,CIEDE1976也
- 大学生创新训练项目经验分享
菜就多练@Jade
创业创新
前几天有同学问我能不能写一个科研竞赛什么的经验贴,给新生们分享一下,正好最近事情不是很多,所以打算写一个关于大创申报的帖子,供有需要的同学参考。本人计算机学院22级的学生,大二下学期的时候申报的大创项目,然后顺利拿到了2024年大创国家级重点立项,(PS:学校共立项481项,其中仅2个国家级重点项目。一、回顾本人的准备过程(仅供参考)大一下学期的时候,了解到有大创这个平台,也希望自己本科阶段,能够
- 如何在 Hugging Face 上下载和使用模型—全面指南
Hello.Reader
人工智能python语言运维人工智能机器学习ai
1.引言在自然语言处理(NLP)领域,HuggingFace已成为一个不可忽视的平台。无论你是从事学术研究还是在工业中应用NLP技术,HuggingFace都为你提供了丰富的预训练模型和工具库,这些资源大大加速了NLP任务的开发和部署。HuggingFace提供的模型库涵盖了从文本分类到文本生成、从机器翻译到问答系统等各种NLP任务。这些模型大多是由社区贡献并经过大规模数据训练的,使用它们可以帮助
- 谁掌握了体育数据的密码就是胜利者
翱翔的猪脑花
服务器运维前端
体育数据分析正在重塑现代竞技体育的面貌。从NBA的投篮热区图到足球比赛中的跑动距离统计,数据已经渗透到体育领域的每个角落。职业球队每年投入数百万美元用于数据分析系统的建设,教练团队中数据分析师的比例持续上升。这种转变不仅改变了球队的训练和比赛策略,更深刻地影响着体育产业的发展方向。一、数据采集:竞技体育的数字化基础现代体育数据的采集已经形成了完整的生态系统。在NBA赛场上,每块场地安装的6个追踪摄
- AI如何预测比赛结果:体育预测技术全解析
翱翔的猪脑花
人工智能
利用人工智能技术构建一个完整的体育预测系统,涵盖数据收集、模型构建到部署应用的完整流程。一、系统架构设计1.整体架构数据采集层数据处理层模型训练层预测服务层应用展示层2.技术选型Python3.8+TensorFlow/PyTorchScikit-learnPandas/NumpyFlask/FastAPI二、数据收集与处理1.数据源集成python复制importrequestsimportpa
- Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_79856539
javaweb大数据pythonspark
本系统基于大数据设计并实现成都地铁客流量分析系统,使用网络爬虫爬取并收集成都地铁客流量数据,运用机器学习和时间序列分析等方法,对客流量数据进行预处理和特征选择,构建客流量预测模型,利用历史数据对模型进行训练和优化,实现客流量预测模型的部署和应用,通过系统界面展示预测结果。对预测模型进行评估和验证,并提出改进方案。设计步骤使用Python语言编写爬虫程序采集数据,并对原始数据集进行预处理;使用Pyt
- 大语言模型训练数据集格式
香菜烤面包
#AI大模型语言模型人工智能深度学习
1.SFT(有监督微调)的数据集格式对于大语言模型的训练中,SFT(SupervisedFine-Tuning)的数据集格式可以采用以下方式:输入数据:输入数据是一个文本序列,通常是一个句子或者一个段落。每个样本可以是一个字符串或者是一个tokenized的文本序列。标签数据:标签数据是与输入数据对应的标签或类别。标签可以是单个类别,也可以是多个类别的集合。对于多分类任务,通常使用one-hot编
- 大模型训练 && 微调数据格式
comli_cn
大模型笔记人工智能大模型
1.SFT(有监督微调)的数据集格式?对于大语言模型的训练中,SFT(SupervisedFine-Tuning)的数据集格式可以采用以下方式:输入数据:输入数据是一个文本序列,通常是一个句子或者一个段落。每个样本可以是一个字符串或者是一个tokenized的文本序列。标签数据:标签数据是与输入数据对应的标签或类别。标签可以是单个类别,也可以是多个类别的集合。对于多分类任务,通常使用one-hot
- 通俗理解Test time Scaling Law、RL Scaling Law和预训练Scaling Law
老A的AI实验室
#【LLM】人工智能chatgpt深度学习LLMagi算法RL
一、ScalingLaw解释1、预训练阶段的ScalingLaw(打地基阶段)通俗解释:就像建房子时,地基越大、材料越多、施工时间越长,房子就能盖得越高越稳。核心:通过堆资源(算力、数据、模型参数)让AI变得更聪明。具体含义:在预训练阶段(比如训练GPT这种大模型),模型的表现取决于三个核心因素:模型参数(房子的“大小”):神经元越多,模型越“聪明”。数据量(砖头的“数量”):喂给模型的文本越多,
- Python基础训练100题(带答案)
乔代码嘚
python开发语言算法
文末有彩蛋!!!Python3100例实例001:数字组合题目有四个数字:1、2、3、4,能组成多少个互不相同且无重复数字的三位数?各是多少?程序分析遍历全部可能,把有重复的剃掉。total=0foriinrange(1,5):forjinrange(1,5):forkinrange(1,5):if((i!=j)and(j!=k)and(k!=i)):print(i,j,k)total+=1pri
- 大语言模型:从开发到运行的深度解构
nbsaas-boot
语言模型人工智能自然语言处理
一、LLM开发训练的全流程解析1.数据工程的炼金术数据采集:构建涵盖网页文本(CommonCrawl)、书籍、论文、代码等领域的超大规模语料库,典型规模可达数十TB。例如GPT-4的训练数据包含超过13万亿token数据清洗:通过质量过滤(去除低质内容)、去重(MinHash算法)、毒性检测(NSFW内容识别)等步骤构建高质量数据集数据增强:引入代码数据提升逻辑性(如GitHub代码)、多语言数据
- GPT和BERT的异同
彬彬侠
自然语言处理gptbertTransformer解码器编码器NLP自然语言处理
GPT(GenerativePre-trainedTransformer)和BERT(BidirectionalEncoderRepresentationsfromTransformers)都是基于Transformer架构的语言模型,但它们的设计理念、使用的Transformer部分、训练方式、目标任务等方面有显著的不同。以下是它们的异同点:1.基本架构与模型设计GPT:使用的Transform
- 探秘 DeepSeek-V3:低成本训练铸就的 AI 大模型传奇
道亦无名
人工智能
在人工智能大模型的激烈竞争赛道上,DeepSeek-V3宛如一匹黑马,凭借其卓越的性能和令人惊叹的低训练成本,迅速吸引了全球AI领域的目光。今天,就让我们深入剖析DeepSeek-V3,探寻其背后的故事。DeepSeek-V3:横空出世的AI新贵DeepSeek-V3是杭州深度求索人工智能基础技术研究有限公司于2024年12月26日重磅发布的混合专家(MoE)语言模型。一经推出,便在知识类任务、算
- LLM论文笔记 15: Transformers Can Achieve Length Generalization But Not Robustly
Zhouqi_Hua
大模型论文阅读论文阅读语言模型自然语言处理深度学习笔记
Arxiv日期:2024.2.14机构:GoogleDeepMind/UniversityofToronto关键词长度泛化位置编码数据格式核心结论1.实验结论:十进制加法任务上的长度泛化最佳组合:FIRE位置编码随机化位置编码反向数据格式索引提示(indexhints,辅助定位)2.在适当的配置下,Transformer模型可以泛化到训练序列长度的2.5倍(例如从40位加法训练成功泛化到100位加
- 基于Roboflow平台的数据集导出与YOLOv8目标检测训练实战
步入烟尘
YOLO系列创新涨点超专栏YOLO目标检测人工智能RoboflowYOLOv8
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录基于Roboflow平台的数据集导出与YOLOv8目标检测训练实战1.什么是Roboflow?2.创
- 代码随想录训练营第二十三天| 39. 组合总和 40.组合总和II 131.分割回文串
chengooooooo
算法
39.组合总和题目链接/文章讲解:代码随想录视频讲解:带你学透回溯算法-组合总和(对应「leetcode」力扣题目:39.组合总和)|回溯法精讲!_哔哩哔哩_bilibili//组合问题要考虑是不是在一个集合里操作//最常见的就是递归回溯法//再考虑考虑剪枝classSolution{publicList>combinationSum(int[]candidates,inttarget){List
- DeepSeek引爆递归开发大爆炸!
极道Jdon
javascriptreactjs
DeepSeekR1的发布意味着AI的普及是必然的,因为它让人们能轻松创建新的推理数据集,并用这些数据训练强大的AI模型。现在,PrimeIntellect这家公司通过发布SYNTHETIC-1证明了这一点。这个数据集包含了140万个带有“思维链”的推理样本,都是由DeepSeekR1生成的。PrimeIntellect解释说:“DeepSeekR1的研究论文强调了生成高质量合成数据的重要性。作为
- 人工智能训练师如何做图像数据标注,从情感分析和实体分析两个个场景分析
小宝哥Code
人工智能训练师人工智能
在人工智能训练中,图像情感分析和图像实体分析是两个重要的应用场景。高质量的图像数据标注对于训练情感识别模型和目标检测/语义分割模型至关重要。本指南将详细介绍:情感分析标注(EmotionAnalysis)实体分析标注(EntityRecognition)自动化标注工具Python代码示例数据格式与存储标注数据质量评估1.情感分析(EmotionAnalysis)标注1.1情感分析简介图像情感分析(
- TensorFlow 2 来训练一个线性回归模型
大数据张老师
tensorflow线性回归人工智能
本节将通过一个简单的示例,带领大家了解如何使用TensorFlow2来训练一个线性回归模型。这个例子将帮助大家掌握如何从数据处理、模型构建、训练到评估等步骤,逐步实现一个基础的机器学习任务。下面是代码的详细讲解。importtensorflowastfimportpandasaspd首先,我们导入了TensorFlow和Pandas库。TensorFlow用于构建和训练我们的机器学习模型,Pand
- 深度学习框架与边缘计算融合驱动医疗金融模型优化新路径
智能计算研究中心
其他
内容概要随着边缘计算与深度学习框架的深度融合,医疗与金融领域的模型优化正在突破传统算力与隐私保护的瓶颈。当前,TensorFlow、PyTorch等主流框架通过轻量化改造(如TensorFlowLite与PyTorchMobile)逐步适应边缘设备的资源限制,同时结合联邦学习技术构建分布式训练网络。这种技术协同不仅降低了医疗影像诊断中的数据传输延迟,还通过动态模型压缩策略(如量化与剪枝)将金融预测
- 边缘计算与联邦学习驱动医疗金融预测及模型可解释性技术突破
智能计算研究中心
其他
内容概要当前人工智能技术正经历多维度融合与迭代升级,边缘计算与联邦学习的协同创新成为突破性方向。通过将计算资源下沉至终端设备,边缘计算有效缓解了传统中心化架构的延迟与带宽压力,而联邦学习则在保障数据隐私的前提下,实现了跨机构模型的分布式训练。这种技术组合在医疗诊断与金融预测领域展现出显著优势,例如通过部署轻量化模型实现实时病理分析,或构建跨银行风险预测系统,同时满足监管合规需求。在模型优化层面,自
- 人工智能学习框架
静默.\\
人工智能学习
人工智能学习框架概述随着人工智能技术的飞速发展,选择合适的机器学习或深度学习框架对于项目的成功至关重要。这些框架提供了强大的工具和库,使得开发者能够更高效地构建、训练和部署模型。目前市面上有许多流行的AI学习框架,每种框架都有其独特的特点和适用场景。首先,TensorFlow是由Google开发的一个开源机器学习框架,支持从简单的线性回归到复杂的神经网络等多种模型类型。它以其高度灵活性和可扩展性著
- NVIDIA A100 SXM4与NVIDIA A100 PCIe版本区别深度对比:架构、性能与场景解析
ASI人工智能
人工智能架构机器人AIGCgpt文心一言palm
NVIDIAA100SXM4与PCIe版本深度对比:架构、性能与场景解析作为NVIDIAAmpere架构的旗舰级数据中心GPU,A100系列凭借强大的计算能力和显存带宽,已成为人工智能训练、高性能计算(HPC)等领域的核心硬件。然而,A100家族中存在两种不同形态的版本——SXM4与PCIe,二者在物理设计、性能上限和适用场景上存在显著差异。本文将深入解析两者的技术特性,为硬件选型提供决策依据。文
- 手把手教你本地部署DeepSeek大模型!从环境搭建到数据训练全流程实战
菜鸟养成_记
人工智能
前言:为什么选择DeepSeek本地部署?在AI技术爆炸式发展的今天,企业/开发者对数据隐私和定制化需求日益增长。DeepSeek作为国产优秀大模型,支持本地化部署和私有数据训练,可完美解决:数据不出内网:医疗/金融等敏感行业刚需垂直领域定制:用自有数据打造专属AI助手算力自由掌控:灵活调配GPU资源,成本可控本文将带你从零完成DeepSeek的本地部署,并通过真实业务数据训练专属模型,全程附代码
- 想象一个AI保姆机器人使用场景分析
风口猪炒股指标
我的思想大火拼人工智能机器人DeepSeek深度思考
把我的一个想象AI保姆机器人使用场景用DeepSeek和Kimi进行深度思考,下面2张图分别是kimi和ds的思维链。我觉得ds的总结一如既往的优秀。关于AI是否具备智慧的判断与伦理反思一、AI的“智慧”本质:能力与局限当前AI的技术边界无自主意识:现有AI系统(如ChatGPT、机器人保姆)本质是基于数据和算法的模式匹配工具,不具备自我意识、情感或道德判断能力。其所有输出均由训练数据与程序逻辑驱
- 使用 ChatGPT 构建 YouTube 下载器的分步指南
pxr007
chatgptpython开发语言
让我们使用ChatGPT的代码生成功能在Python中生成功能齐全的YouTube下载器应用程序,而无需自己编写一行代码!不相信这是可能的?只需按照本教程中的步骤操作......ChatGPT是OpenAI训练的大型语言模型,可以根据自然语言输入生成代码。如何安装PC机箱风扇这意味着您可以用简单的英语描述您想要实现的目标,ChatGPT将为您生成代码。在本教程中,我们将使用ChatGPT的此功能为
- 深度学习之图像回归(二)
zhengyawen666
深度学习回归数据挖掘人工智能
前言这篇文章主要是在图像回归(一)的基础上对该项目进行的优化。(一)主要是帮助迅速入门理清一个深度学习项目的逻辑这篇文章则主要注重在此基础上对于数据预处理和模型训练进行优化前者会通过涉及PCA主成分分析特征选择后者通过正则化数据预处理数据预处理的原因思路链未经过处理的原始数据存在一些问题->对数据进行处理(涉及多种方法)->提升模型性能数据可能存在的问题冗余信息:数据中可能存在重复的特征或高度相关
- 文献阅读(part2)--Towards K-means-friendly spaces Simultaneous deep learning and clustering
GUI Research Group
机器学习python深度聚类
学习笔记,仅供参考文章目录AbstractIntroductionBackgroundandRelatedWorksProposedFormulationOptimizationProcedureInitializationviaLayer-wisePre-Training(通过分层预训练进行初始化)AlternatingStochasticOptimizationExperiments合成数据演
- DeepSeek核心技术 MoE(混合专家模型)
baiyi666_888
ai
下图说明了DeepSeek-V3的基本架构。在DeepSeek-V2的基础上,采用MLA(多头潜在注意力)和DeepSeekMoE进行高效的推理和经济的训练。
- Python中常见库 PyTorch和Pydantic 讲解
爱丫爱
pythonpytorch开发语言
PyTorch简介PyTorch是一个开源的深度学习框架,由Facebook的AI研究团队开发。它提供了丰富的工具和库,用于构建和训练各种深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)及其变体(如LSTM、GRU)、生成对抗网络(GAN)等。核心特性动态计算图:PyTorch采用动态计算图,这意味着在运行时可以动态定义和修改计算图,使得模型的构建和调试更加灵活。这与TensorFl
- TOMCAT在POST方法提交参数丢失问题
357029540
javatomcatjsp
摘自http://my.oschina.net/luckyi/blog/213209
昨天在解决一个BUG时发现一个奇怪的问题,一个AJAX提交数据在之前都是木有问题的,突然提交出错影响其他处理流程。
检查时发现页面处理数据较多,起初以为是提交顺序不正确修改后发现不是由此问题引起。于是删除掉一部分数据进行提交,较少数据能够提交成功。
恢复较多数据后跟踪提交FORM DATA ,发现数
- 在MyEclipse中增加JSP模板 删除-2008-08-18
ljy325
jspxmlMyEclipse
在D:\Program Files\MyEclipse 6.0\myeclipse\eclipse\plugins\com.genuitec.eclipse.wizards_6.0.1.zmyeclipse601200710\templates\jsp 目录下找到Jsp.vtl,复制一份,重命名为jsp2.vtl,然后把里面的内容修改为自己想要的格式,保存。
然后在 D:\Progr
- JavaScript常用验证脚本总结
eksliang
JavaScriptjavaScript表单验证
转载请出自出处:http://eksliang.iteye.com/blog/2098985
下面这些验证脚本,是我在这几年开发中的总结,今天把他放出来,也算是一种分享吧,现在在我的项目中也在用!包括日期验证、比较,非空验证、身份证验证、数值验证、Email验证、电话验证等等...!
&nb
- 微软BI(4)
18289753290
微软BI SSIS
1)
Q:查看ssis里面某个控件输出的结果:
A MessageBox.Show(Dts.Variables["v_lastTimestamp"].Value.ToString());
这是我们在包里面定义的变量
2):在关联目的端表的时候如果是一对多的关系,一定要选择唯一的那个键作为关联字段。
3)
Q:ssis里面如果将多个数据源的数据插入目的端一
- 定时对大数据量的表进行分表对数据备份
酷的飞上天空
大数据量
工作中遇到数据库中一个表的数据量比较大,属于日志表。正常情况下是不会有查询操作的,但如果不进行分表数据太多,执行一条简单sql语句要等好几分钟。。
分表工具:linux的shell + mysql自身提供的管理命令
原理:使用一个和原表数据结构一样的表,替换原表。
linux shell内容如下:
=======================开始
- 本质的描述与因材施教
永夜-极光
感想随笔
不管碰到什么事,我都下意识的想去探索本质,找寻一个最形象的描述方式。
我坚信,世界上对一件事物的描述和解释,肯定有一种最形象,最贴近本质,最容易让人理解
&
- 很迷茫。。。
随便小屋
随笔
小弟我今年研一,也是从事的咱们现在最流行的专业(计算机)。本科三流学校,为了能有个更好的跳板,进入了考研大军,非常有幸能进入研究生的行业(具体学校就不说了,怕把学校的名誉给损了)。
先说一下自身的条件,本科专业软件工程。主要学习就是软件开发,几乎和计算机没有什么区别。因为学校本身三流,也就是让老师带着学生学点东西,然后让学生毕业就行了。对专业性的东西了解的非常浅。就那学的语言来说
- 23种设计模式的意图和适用范围
aijuans
设计模式
Factory Method 意图 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使一个类的实例化延迟到其子类。 适用性 当一个类不知道它所必须创建的对象的类的时候。 当一个类希望由它的子类来指定它所创建的对象的时候。 当类将创建对象的职责委托给多个帮助子类中的某一个,并且你希望将哪一个帮助子类是代理者这一信息局部化的时候。
Abstr
- Java中的synchronized和volatile
aoyouzi
javavolatilesynchronized
说到Java的线程同步问题肯定要说到两个关键字synchronized和volatile。说到这两个关键字,又要说道JVM的内存模型。JVM里内存分为main memory和working memory。 Main memory是所有线程共享的,working memory则是线程的工作内存,它保存有部分main memory变量的拷贝,对这些变量的更新直接发生在working memo
- js数组的操作和this关键字
百合不是茶
js数组操作this关键字
js数组的操作;
一:数组的创建:
1、数组的创建
var array = new Array(); //创建一个数组
var array = new Array([size]); //创建一个数组并指定长度,注意不是上限,是长度
var arrayObj = new Array([element0[, element1[, ...[, elementN]]]
- 别人的阿里面试感悟
bijian1013
面试分享工作感悟阿里面试
原文如下:http://greemranqq.iteye.com/blog/2007170
一直做企业系统,虽然也自己一直学习技术,但是感觉还是有所欠缺,准备花几个月的时间,把互联网的东西,以及一些基础更加的深入透析,结果这次比较意外,有点突然,下面分享一下感受吧!
&nb
- 淘宝的测试框架Itest
Bill_chen
springmaven框架单元测试JUnit
Itest测试框架是TaoBao测试部门开发的一套单元测试框架,以Junit4为核心,
集合DbUnit、Unitils等主流测试框架,应该算是比较好用的了。
近期项目中用了下,有关itest的具体使用如下:
1.在Maven中引入itest框架:
<dependency>
<groupId>com.taobao.test</groupId&g
- 【Java多线程二】多路条件解决生产者消费者问题
bit1129
java多线程
package com.tom;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.loc
- 汉字转拼音pinyin4j
白糖_
pinyin4j
以前在项目中遇到汉字转拼音的情况,于是在网上找到了pinyin4j这个工具包,非常有用,别的不说了,直接下代码:
import java.util.HashSet;
import java.util.Set;
import net.sourceforge.pinyin4j.PinyinHelper;
import net.sourceforge.pinyin
- org.hibernate.TransactionException: JDBC begin failed解决方案
bozch
ssh数据库异常DBCP
org.hibernate.TransactionException: JDBC begin failed: at org.hibernate.transaction.JDBCTransaction.begin(JDBCTransaction.java:68) at org.hibernate.impl.SessionImp
- java-并查集(Disjoint-set)-将多个集合合并成没有交集的集合
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.ut
- Java PrintWriter打印乱码
chenbowen00
java
一个小程序读写文件,发现PrintWriter输出后文件存在乱码,解决办法主要统一输入输出流编码格式。
读文件:
BufferedReader
从字符输入流中读取文本,缓冲各个字符,从而提供字符、数组和行的高效读取。
可以指定缓冲区的大小,或者可使用默认的大小。大多数情况下,默认值就足够大了。
通常,Reader 所作的每个读取请求都会导致对基础字符或字节流进行相应的读取请求。因
- [天气与气候]极端气候环境
comsci
环境
如果空间环境出现异变...外星文明并未出现,而只是用某种气象武器对地球的气候系统进行攻击,并挑唆地球国家间的战争,经过一段时间的准备...最大限度的削弱地球文明的整体力量,然后再进行入侵......
那么地球上的国家应该做什么样的防备工作呢?
&n
- oracle order by与union一起使用的用法
daizj
UNIONoracleorder by
当使用union操作时,排序语句必须放在最后面才正确,如下:
只能在union的最后一个子查询中使用order by,而这个order by是针对整个unioning后的结果集的。So:
如果unoin的几个子查询列名不同,如
Sql代码
select supplier_id, supplier_name
from suppliers
UNI
- zeus持久层读写分离单元测试
deng520159
单元测试
本文是zeus读写分离单元测试,距离分库分表,只有一步了.上代码:
1.ZeusMasterSlaveTest.java
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Assert;
import org.j
- Yii 截取字符串(UTF-8) 使用组件
dcj3sjt126com
yii
1.将Helper.php放进protected\components文件夹下。
2.调用方法:
Helper::truncate_utf8_string($content,20,false); //不显示省略号 Helper::truncate_utf8_string($content,20); //显示省略号
&n
- 安装memcache及php扩展
dcj3sjt126com
PHP
安装memcache tar zxvf memcache-2.2.5.tgz cd memcache-2.2.5/ /usr/local/php/bin/phpize (?) ./configure --with-php-confi
- JsonObject 处理日期
feifeilinlin521
javajsonJsonOjbectJsonArrayJSONException
写这边文章的初衷就是遇到了json在转换日期格式出现了异常 net.sf.json.JSONException: java.lang.reflect.InvocationTargetException 原因是当你用Map接收数据库返回了java.sql.Date 日期的数据进行json转换出的问题话不多说 直接上代码
&n
- Ehcache(06)——监听器
234390216
监听器listenerehcache
监听器
Ehcache中监听器有两种,监听CacheManager的CacheManagerEventListener和监听Cache的CacheEventListener。在Ehcache中,Listener是通过对应的监听器工厂来生产和发生作用的。下面我们将来介绍一下这两种类型的监听器。
- activiti 自带设计器中chrome 34版本不能打开bug的解决
jackyrong
Activiti
在acitivti modeler中,如果是chrome 34,则不能打开该设计器,其他浏览器可以,
经证实为bug,参考
http://forums.activiti.org/content/activiti-modeler-doesnt-work-chrome-v34
修改为,找到
oryx.debug.js
在最头部增加
if (!Document.
- 微信收货地址共享接口-终极解决
laotu5i0
微信开发
最近要接入微信的收货地址共享接口,总是不成功,折腾了好几天,实在没办法网上搜到的帖子也是骂声一片。我把我碰到并解决问题的过程分享出来,希望能给微信的接口文档起到一个辅助作用,让后面进来的开发者能快速的接入,而不需要像我们一样苦逼的浪费好几天,甚至一周的青春。各种羞辱、谩骂的话就不说了,本人还算文明。
如果你能搜到本贴,说明你已经碰到了各种 ed
- 关于人才
netkiller.github.com
工作面试招聘netkiller人才
关于人才
每个月我都会接到许多猎头的电话,有些猎头比较专业,但绝大多数在我看来与猎头二字还是有很大差距的。 与猎头接触多了,自然也了解了他们的工作,包括操作手法,总体上国内的猎头行业还处在初级阶段。
总结就是“盲目推荐,以量取胜”。
目前现状
许多从事人力资源工作的人,根本不懂得怎么找人才。处在人才找不到企业,企业找不到人才的尴尬处境。
企业招聘,通常是需要用人的部门提出招聘条件,由人
- 搭建 CentOS 6 服务器 - 目录
rensanning
centos
(1) 安装CentOS
ISO(desktop/minimal)、Cloud(AWS/阿里云)、Virtualization(VMWare、VirtualBox)
详细内容
(2) Linux常用命令
cd、ls、rm、chmod......
详细内容
(3) 初始环境设置
用户管理、网络设置、安全设置......
详细内容
(4) 常驻服务Daemon
- 【求助】mongoDB无法更新主键
toknowme
mongodb
Query query = new Query(); query.addCriteria(new Criteria("_id").is(o.getId())); &n
- jquery 页面滚动到底部自动加载插件集合
xp9802
jquery
很多社交网站都使用无限滚动的翻页技术来提高用户体验,当你页面滑到列表底部时候无需点击就自动加载更多的内容。下面为你推荐 10 个 jQuery 的无限滚动的插件:
1. jQuery ScrollPagination
jQuery ScrollPagination plugin 是一个 jQuery 实现的支持无限滚动加载数据的插件。
2. jQuery Screw
S