径向基(RBF)神经网络

RBF网络能够逼近任意非线性的函数。可以处理系统内难以解析的规律性,具有很好的泛化能力,并且具有较快的学

习速度。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络

由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢,比如BP网络如果对于

输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络,比如RBF网络。接下来重点

先介绍RBF网络的原理,然后给出其实现。先看如下图


   径向基(RBF)神经网络_第1张图片


径向基(RBF)神经网络_第2张图片

径向基(RBF)神经网络_第3张图片

 正则化的RBF网络参考这里。下面是网上找的一个比较好的Python的RBF网络实现。


代码:

from scipy import *
from scipy.linalg import norm, pinv
 
from matplotlib import pyplot as plt
 
class RBF:
     
    def __init__(self, indim, numCenters, outdim):
        self.indim = indim
        self.outdim = outdim
        self.numCenters = numCenters
        self.centers = [random.uniform(-1, 1, indim) for i in xrange(numCenters)]
        self.beta = 8
        self.W = random.random((self.numCenters, self.outdim))
         
    def _basisfunc(self, c, d):
        assert len(d) == self.indim
        return exp(-self.beta * norm(c-d)**2)
     
    def _calcAct(self, X):
        # calculate activations of RBFs
        G = zeros((X.shape[0], self.numCenters), float)
        for ci, c in enumerate(self.centers):
            for xi, x in enumerate(X):
                G[xi,ci] = self._basisfunc(c, x)
        return G
     
    def train(self, X, Y):
        """ X: matrix of dimensions n x indim 
            y: column vector of dimension n x 1 """
         
        # choose random center vectors from training set
        rnd_idx = random.permutation(X.shape[0])[:self.numCenters]
        self.centers = [X[i,:] for i in rnd_idx]
         
        print "center", self.centers
        # calculate activations of RBFs
        G = self._calcAct(X)
        print G
         
        # calculate output weights (pseudoinverse)
        self.W = dot(pinv(G), Y)
         
    def test(self, X):
        """ X: matrix of dimensions n x indim """
         
        G = self._calcAct(X)
        Y = dot(G, self.W)
        return Y
 
      
if __name__ == '__main__':
    n = 100
    x = mgrid[-1:1:complex(0,n)].reshape(n, 1)
    # set y and add random noise
    y = sin(3*(x+0.5)**3 - 1)
    # y += random.normal(0, 0.1, y.shape)
     
    # rbf regression
    rbf = RBF(1, 10, 1)
    rbf.train(x, y)
    z = rbf.test(x)
       
    # plot original data
    plt.figure(figsize=(12, 8))
    plt.plot(x, y, 'k-')
     
    # plot learned model
    plt.plot(x, z, 'r-', linewidth=2)
     
    # plot rbfs
    plt.plot(rbf.centers, zeros(rbf.numCenters), 'gs')
     
    for c in rbf.centers:
        # RF prediction lines
        cx = arange(c-0.7, c+0.7, 0.01)
        cy = [rbf._basisfunc(array([cx_]), array([c])) for cx_ in cx]
        plt.plot(cx, cy, '-', color='gray', linewidth=0.2)
     
    plt.xlim(-1.2, 1.2)
    plt.show()
    

最后提供Github上的一个C++实现的RBF,供日后参考。


你可能感兴趣的:(人工智能)