https://www.luogu.org/problemnew/show/P3790
https://www.luogu.org/problemnew/show/P4336
设 f(n) 为边权gcd为n的生成树个数,要求的是 ∑Wn=1nf(n) 。
看到gcd就是反演。 f(n) 并不能直接求,我们设 F(n) 为边权gcd为n的倍数的生成树个数,即 F(n)=∑n|df(d) ,套路反演,有 f(n)=∑n|dμ(dn)F(d) ,这个式子复习一下证明,见下面(请跳过)
∑n|dμ(dn)F(d)=∑n|dμ(dn)∑d|xf(x)
令 d=sn,x=gd ,则 x=(gs)n ,化为
∑n|xf(x)∑s|xnμ(s)=∑n|xf(x)[x=n]=f(n)
然后求 ∑Wn=1n∑n|dμ(dn)F(d)=∑Wd=1F(d)∑n|dnμ(dn)
F(d) 可以用矩阵树定理去算,我们只加边权为d的倍数的边即可。理论上是过不了的,但是有用的d很少,首先d只能是某边权的约数,其次很多d都找不够n-1条边,所以可以预处理出满足每个d的边数,然后对于<=n-2条边的d直接跳过,这个优化很强,可以过了。
注意:自环要直接忽略,高斯消元的边界要处理好(越界调了一个晚上)。
#include
#define maxn 66
#define maxm 3003
#define N 1000010
#define M 1000000007
using namespace std;
int A[maxn][maxn];
int n, m, cnt, ___;
int U[maxm], V[maxm], W[maxm], MW;
int f[N], prime[N], phi[N];
bool Vis[N];
int Read(){
int x = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + (ch ^ 48), ch = getchar();
return x;
}
void Pre(){
phi[1] = 1;
for(int i = 2; i < N; i++){
if(!Vis[i]){
prime[++cnt] = i;
phi[i] = i - 1;
}
for(int j = 1; j <= cnt; j++){
if(1LL * i * prime[j] >= 1LL * N) break;
Vis[i*prime[j]] = true;
if(i % prime[j] == 0){
phi[i*prime[j]] = phi[i] * prime[j];
break;
}
phi[i*prime[j]] = phi[i] * (prime[j] - 1);
}
}
}
int Pow(int x, int y){
int res = 1;
for(; y; x = 1LL * x * x % M, y >>= 1)
if(y & 1) res = 1LL * res * x % M;
return res;
}
int Det(){
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
A[i][j] = (A[i][j] + M) % M;
int rev = 0, ans = 1;
for(int i = 2; i <= n; i++){
int pos = i;
for(; pos <= n && !A[pos][i]; pos++);
if(pos != i) rev ^= 1, swap(A[pos], A[i]);
if(!A[i][i]) return 0;
ans = 1LL * ans * A[i][i] % M;
int Inv = Pow(A[i][i], M-2);
for(int j = i+1; j <= n; j++){
if(!A[j][i]) continue;
int Mul = 1LL * A[j][i] * Inv % M;
for(int k = 2; k <= n; k++)
A[j][k] = (A[j][k] - 1LL * A[i][k] * Mul % M + M) % M;
}
}
if(rev) ans = (M - ans) % M;
return ans;
}
int main(){
Pre();
n = Read(); m = Read();
for(int i = 1; i <= m; i++) U[i] = Read(), V[i] = Read(), W[i] = Read();
for(int i = 1; i <= m; i++){
for(int j = 1; j * j <= W[i]; j++){
if(W[i] % j) continue;
f[j] ++;
if(W[i] != j * j) f[W[i] / j] ++;
}
MW = max(MW, W[i]);
}
for(int i = 1; i <= MW; i++){
if(f[i] < n - 1) continue;
memset(A, 0, sizeof(A));
for(int j = 1; j <= m; j++){
if(U[j] == V[j] || W[j] % i) continue;
A[U[j]][U[j]] ++;
A[V[j]][V[j]] ++;
A[U[j]][V[j]] --;
A[V[j]][U[j]] --;
}
___ = (___ + 1LL * phi[i] * Det() % M) % M;
}
printf("%d\n", ___);
return 0;
}
这题比上一题更水。
f(S) 表示 S 不取其他随便的方案, g(S) 表示只有 S 不取的方案。简单的子集反演:
f(S)=∑S⊆Tg(T) , g(S)=∑S⊆T(−1)|T|−|S|f(T)
要算 g(0) , f 枚举集合然后矩阵树乱搞即可。不管怎样,跑得过。(是矩阵树定理的题都跑得过)
#include
#define maxn 20
#define M 1000000007
using namespace std;
typedef long long LL;
int n, m[maxn];
vector <int> X[maxn], Y[maxn];
LL A[maxn][maxn], Violet;
LL Pow(LL x, int y){
LL res = 1;
for(; y; x = x * x % M, y >>= 1)
if(y & 1) res = res * x % M;
return res;
}
LL Det(){
int rev = 0;
LL ans = 1;
for(int i = 2; i <= n; i++){
int x = i;
for(; x <= n && !A[x][i]; x++);
if(x != i) rev ^= 1, swap(A[x], A[i]);
if(!A[i][i]) return 0;
ans = ans * A[i][i] % M;
LL Inv = Pow(A[i][i], M-2);
for(int j = i+1; j <= n; j++){
if(!A[j][i]) continue;
LL Mul = A[j][i] * Inv % M;
for(int k = 2; k <= n; k++)
A[j][k] = (A[j][k] - A[i][k] * Mul % M + M) % M;
}
}
if(rev) ans = (M - ans) % M;
return ans;
}
int main(){
scanf("%d", &n);
int x, y;
for(int i = 1; i < n; i++){
scanf("%d", &m[i]);
for(int j = 1; j <= m[i]; j++){
scanf("%d%d", &x, &y);
X[i].push_back(x), Y[i].push_back(y);
}
}
for(int s = 0; s < (1<<(n-1))-1; s++){
memset(A, 0, sizeof(A));
int cnt = 0;
for(int i = 1; i < n; i++){
if((1<<(i-1)) & s){
cnt ++;
continue;
}
for(int j = 0; j < m[i]; j++){
A[X[i][j]][X[i][j]] ++;
A[Y[i][j]][Y[i][j]] ++;
A[X[i][j]][Y[i][j]] --;
A[Y[i][j]][X[i][j]] --;
}
}
if(cnt & 1) Violet = (Violet - Det() + M) % M;
else Violet = (Violet + Det()) % M;
}
printf("%lld\n", Violet);
return 0;
}