状压dp入门

题目:

有一个n*m的棋盘(1<=n<=5,1<=m<=1000),现在有1*2和2*1的小方块无数个,想要覆盖整个棋盘,问一共有多少种方法。

如果数量大于1000000007,则输出对1000000007去余的结果。

思路:状压dp:

为了更好的理解状压dp,首先给大家介绍位运算相关的知识。
1.’&’符号,x&y,会将两个十进制数在二进制下进行与运算(都1为1,其余为0)
然后返回其十进制下的值。例如3(11)&2(10)=2(10)。
2.’|’符号,x|y,会将两个十进制数在二进制下进行或运算(都0为0,其余为1)
然后返回其十进制下的值。例如3(11)|2(10)=3(11)。
3.’^’符号,x^y,会将两个十进制数在二进制下进行异或运算(不同为1,其余
为0)然后返回其十进制下的值。例如3(11)^2(10)=1(01)。
4.’<<’符号,左移操作,x<<2,将x在二进制下的每一位向左移动两位,
最右边用0填充,也就相当于让x乘以4。
相应的,’>>’是右移操作,x>>1相当于给x/2,去掉x二进制下的最右一位。

状态压缩问题一般是指用10进制数来表示二进制下的状态,常用到位运算!!

1.判断一个数字x在二进制下第i位是不是等于1。

方法:if ( ( ( 1 << ( i - 1 ) ) & x ) >0)

解析:将1左移i-1位,相当于制造了一个只有第i位上是1,

其他位上都是0的二进制数,然后用该数与x做与运算,

如果结果>0,说明x第i位上是1,反之则是0。

2.把一个数字x在二进制下的第i位更改成1。

方法:x |= ( 1<<(i-1) )

证明方法与1类似(将1左移i-1位,相当于制造了一个只有第i位上是1,

其他位上都是0的二进制数,然后用该数与x做或运算,只要存在1就为1,

所得结果即为新的x值

AC:代码

#include 

using namespace std;

int dp[1005][33];
int n,m;

#define mod 1000000007

void dfs(int i,int j,int state,int nex)
{
	if( j ==  n){
		dp[i+1][nex] += dp[i][state];
		return;
	}
	if( ((1< 0 ){
		dfs(i,j+1,state,nex);
	}
	if( ((1<

你可能感兴趣的:(dp)