spark+hadoop (yarn模式)


最近毕设需要用到 Spark 集群,所以就记录下了部署的过程。我们知道 Spark 官方提供了三种集群部署方案: Standalone, Mesos, YARN。其中 Standalone 最为方便,本文主要讲述结合 YARN 的部署方案。

软件环境:

Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-32-generic x86_64)
Hadoop: 2.6.0
Spark: 1.3.0

0 写在前面

本例中的演示均为非 root 权限,所以有些命令行需要加 sudo,如果你是 root 身份运行,请忽略 sudo。下载安装的软件建议都放在 home 目录之上,比如~/workspace中,这样比较方便,以免权限问题带来不必要的麻烦。

1. 环境准备

修改主机名

我们将搭建1个master,2个slave的集群方案。首先修改主机名vi /etc/hostname,在master上修改为master,其中一个slave上修改为slave1,另一个同理。

配置hosts

在每台主机上修改host文件

vi /etc/hosts

10.1.1.107      master
10.1.1.108      slave1
10.1.1.109      slave2

配置之后ping一下用户名看是否生效

ping slave1
ping slave2

2.SSH 免密码登录 , 若是scp命令权限否认可以通过拷贝来操作 , 下面红色部分有记载

安装Openssh server

sudo apt-get install openssh-server

在所有机器上都生成私钥和公钥

ssh-keygen -t rsa   #一路回车

需要让机器间都能相互访问,就把每个机子上的id_rsa.pub发给master节点,传输公钥可以用scp来传输。

scp ~/.ssh/id_rsa.pub spark@master:~/.ssh/id_rsa.pub.slave1

在master上,将所有公钥加到用于认证的公钥文件authorized_keys

cat ~/.ssh/id_rsa.pub* >> ~/.ssh/authorized_keys

将公钥文件authorized_keys分发给每台slave

scp ~/.ssh/authorized_keys spark@slave1:~/.ssh/

在每台机子上验证SSH无密码通信

ssh master
ssh slave1
ssh slave2

如果登陆测试不成功,则可能需要修改文件authorized_keys的权限(权限的设置非常重要,因为不安全的设置安全设置,会让你不能使用RSA功能 )

chmod 600 ~/.ssh/authorized_keys

3.安装 Java

从官网下载最新版 Java 就可以,Spark官方说明 Java 只要是6以上的版本都可以,我下的是 jdk-7u75-linux-x64.gz
~/workspace目录下直接解压

tar -zxvf jdk-7u75-linux-x64.gz

修改环境变量sudo vi /etc/profile,添加下列内容,注意将home路径替换成你的

export WORK_SPACE=/home/spark/workspace/
export JAVA_HOME=$WORK_SPACE/jdk1.7.0_75
export JRE_HOME=/home/spark/work/jdk1.7.0_75/jre
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH
export CLASSPATH=$CLASSPATH:.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib

然后使环境变量生效,并验证 Java 是否安装成功

$ source /etc/profile   #生效环境变量
$ java -version         #如果打印出如下版本信息,则说明安装成功
java version "1.7.0_75"
Java(TM) SE Runtime Environment (build 1.7.0_75-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.75-b04, mixed mode)

4.安装 Scala

Spark官方要求 Scala 版本为 2.10.x,注意不要下错版本,我这里下了 2.10.4,官方下载地址(可恶的天朝大局域网下载 Scala 龟速一般)。

同样我们在~/workspace中解压

tar -zxvf scala-2.10.4.tgz

再次修改环境变量sudo vi /etc/profile,添加以下内容:

export SCALA_HOME=$WORK_SPACE/scala-2.10.4
export PATH=$PATH:$SCALA_HOME/bin

同样的方法使环境变量生效,并验证 scala 是否安装成功

$ source /etc/profile   #生效环境变量
$ scala -version        #如果打印出如下版本信息,则说明安装成功
Scala code runner version 2.10.4 -- Copyright 2002-2013, LAMP/EPFL

5.安装配置 Hadoop YARN

下载解压

从官网下载 hadoop2.6.0 版本,这里给个我们学校的镜像下载地址。

同样我们在~/workspace中解压

tar -zxvf hadoop-2.6.0.tar.gz

配置 Hadoop

cd ~/workspace/hadoop-2.6.0/etc/hadoop进入hadoop配置目录,需要配置有以下7个文件:hadoop-env.shyarn-env.shslavescore-site.xmlhdfs-site.xmlmaprd-site.xmlyarn-site.xml

  1. hadoop-env.sh中配置JAVA_HOME

    # The java implementation to use.
    export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
    
  2. yarn-env.sh中配置JAVA_HOME

    # some Java parameters
    export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
    
  3. slaves中配置slave节点的ip或者host,

    slave1
    slave2
    
  4. 修改core-site.xml

    
        
            fs.defaultFS
            hdfs://master:9000/
        
        
             hadoop.tmp.dir
             file:/home/spark/workspace/hadoop-2.6.0/tmp
        
    
    
  5. 修改hdfs-site.xml

    
        
            dfs.namenode.secondary.http-address
            master:9001
        
        
            dfs.namenode.name.dir
            file:/home/spark/workspace/hadoop-2.6.0/dfs/name
        
        
            dfs.datanode.data.dir
            file:/home/spark/workspace/hadoop-2.6.0/dfs/data
        
        
            dfs.replication
            3
        
    
    
  6. 修改mapred-site.xml

    <configuration>
        <property>
            <name>mapreduce.framework.namename>
            <value>yarnvalue>
        property>
    configuration>
    
  7. 修改yarn-site.xml

    <configuration>
        <property>
            <name>yarn.nodemanager.aux-servicesname>
            <value>mapreduce_shufflevalue>
        property>
        <property>
            <name>yarn.nodemanager.aux-services.mapreduce.shuffle.classname>
            <value>org.apache.hadoop.mapred.ShuffleHandlervalue>
        property>
        <property>
            <name>yarn.resourcemanager.addressname>
            <value>master:8032value>
        property>
        <property>
            <name>yarn.resourcemanager.scheduler.addressname>
            <value>master:8030value>
        property>
        <property>
            <name>yarn.resourcemanager.resource-tracker.addressname>
            <value>master:8035value>
        property>
        <property>
            <name>yarn.resourcemanager.admin.addressname>
            <value>master:8033value>
        property>
        <property>
            <name>yarn.resourcemanager.webapp.addressname>
            <value>master:8088value>
        property>
    configuration>
    

将配置好的hadoop-2.6.0文件夹分发给所有slaves吧

scp -r ~/workspace/hadoop-2.6.0 spark@slave1:~/workspace/

启动 Hadoop

在 master 上执行以下操作,就可以启动 hadoop 了。

cd ~/workspace/hadoop-2.6.0     #进入hadoop目录
bin/hadoop namenode -format     #格式化namenode
 在这一步咯 , 因为在上面的ssh配置时权限还是不能通过 , 不能与slave1和slave2  ssh通信 这一步已经解决 , 只需将master上的公钥文件id_rsa.pub拷贝到slave1和slave2上并重新命名为 authorized_keys即可 , 这是在虚拟机下出现的问题 , 但是真实环境中还需要试验scp命令来拷贝公钥文件  sbin/start-dfs.sh               #启动dfs 这里会出现permission denied问题 , 但是却在slave1和slave2中成功启动了DataNode和NodeManager 
sbin/start-yarn.sh              #启动yarn

验证 Hadoop 是否安装成功

可以通过jps命令查看各个节点启动的进程是否正常。在 master 上应该有以下几个进程:

$ jps  #run on master
3407 SecondaryNameNode
3218 NameNode

上面两个没有成功显示出来 , 由于在上面红色部分的问题 , 但是通过http://master:8088成功显示界面


3552 ResourceManager
3910 Jps

在每个slave上应该有以下几个进程:

$ jps   #run on slaves
2072 NodeManager
2213 Jps
1962 DataNode

或者在浏览器中输入 http://master:8088 ,应该有 hadoop 的管理界面出来了,并能看到 slave1 和 slave2 节点。

6.Spark安装

下载解压

进入官方下载地址下载最新版 Spark。我下载的是 spark-1.3.0-bin-hadoop2.4.tgz。

~/workspace目录下解压

tar -zxvf spark-1.3.0-bin-hadoop2.4.tgz
mv spark-1.3.0-bin-hadoop2.4 spark-1.3.0    #原来的文件名太长了,修改下

配置 Spark

cd ~/workspace/spark-1.3.0/conf    #进入spark配置目录
cp spark-env.sh.template spark-env.sh   #从配置模板复制
vi spark-env.sh     #添加配置内容

spark-env.sh末尾添加以下内容(这是我的配置,你可以自行修改):

export SCALA_HOME=/home/spark/workspace/scala-2.10.4
export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
export HADOOP_HOME=/home/spark/workspace/hadoop-2.6.0
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
SPARK_MASTER_IP=master
SPARK_LOCAL_DIRS=/home/spark/workspace/spark-1.3.0
SPARK_DRIVER_MEMORY=1G

注:在设置Worker进程的CPU个数和内存大小,要注意机器的实际硬件条件,如果配置的超过当前Worker节点的硬件条件,Worker进程会启动失败。

vi slaves在slaves文件下填上slave主机名:

slave1
slave2

将配置好的spark-1.3.0文件夹分发给所有slaves吧

scp -r ~/workspace/spark-1.3.0 spark@slave1:~/workspace/

启动Spark

在spark安装目录下执行下面命令才行 , 目前的master安装目录在/opt/spark-2.0.0-bin-hadoop2.7/

sbin/start-all.sh

验证 Spark 是否安装成功

jps检查,在 master 上应该有以下几个进程:

$ jps
7949 Jps
7328 SecondaryNameNode
7805 Master
7137 NameNode
7475 ResourceManager

在 slave 上应该有以下几个进程:

$jps
3132 DataNode
3759 Worker
3858 Jps
3231 NodeManager

进入Spark的Web管理页面: http://master:8080

运行示例

#本地模式两线程运行
./bin/run-example SparkPi 10 --master local[2]

#Spark Standalone 集群模式运行
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://master:7077 \
  lib/spark-examples-1.3.0-hadoop2.4.0.jar \
  100

#Spark on YARN 集群上 yarn-cluster 模式运行
./bin/spark-submit \
    --class org.apache.spark.examples.SparkPi \
    --master yarn-cluster \  # can also be `yarn-client`
    lib/spark-examples*.jar \
    10

注意 Spark on YARN 支持两种运行模式,分别为yarn-clusteryarn-client,具体的区别可以看这篇博文,从广义上讲,yarn-cluster适用于生产环境;而yarn-client适用于交互和调试,也就是希望快速地看到application的输出。

你可能感兴趣的:(spark)