推荐系统经典论文

下面提供的论文,可以说基本都是经典中的经典。读完这些论文,相信对推荐系统的认识肯定会有质的飞越:(不够再找我。O(∩_∩)O~)

综述类:

1、Towards the
Next Generation of Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions。最经典的推荐算法综述

2、Collaborative Filtering Recommender Systems. JB Schafer 关于协同过滤最经典的综述

3、Hybrid Recommender Systems: Survey and Experiments

4、项亮的博士论文《动态推荐系统关键技术研究》

5、个性化推荐系统的研究进展.周涛等

6、Recommender systems L Lü, M Medo, CH Yeung, YC Zhang, ZK Zhang, T Zhou

Physics Reports 519 (1), 1-49 (https://arxiv.org/abs/1202.1112)

  1. 个性化推荐系统评价方法综述.周涛等

协同过滤:

1.matrix factorization techniques for recommender systems. Y Koren

2.Using collaborative filtering to weave an information Tapestry. David Goldberg (协同过滤第一次被提出)

3.Item-Based Collaborative Filtering Recommendation Algorithms. Badrul Sarwar , George Karypis, Joseph Konstan .etl

4.Application of Dimensionality Reduction in Recommender System – A Case Study. Badrul M. Sarwar, George Karypis, Joseph A. Konstan etl

5.Probabilistic Memory-Based Collaborative Filtering. Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu,and Hans-Peter Kriegel

6.Recommendation systems:a probabilistic analysis. Ravi Kumar Prabhakar Raghavan.etl

7.Amazon.com recommendations: item-to-item collaborative filtering. Greg Linden, Brent Smith, and Jeremy York

8.Evaluation of Item-Based Top- N Recommendation Algorithms. George Karypis

9.Probabilistic Matrix Factorization. Ruslan Salakhutdinov

10.Tensor Decompositions,Alternating Least Squares and other Tales. Pierre Comon, Xavier Luciani, André De Almeida

基于内容的推荐:
1.Content-Based Recommendation Systems. Michael J. Pazzani and Daniel Billsus

基于标签的推荐:
1.Tag-Aware Recommender Systems: A State-of-the-Art Survey. Zi-Ke Zhang(张子柯), Tao Zhou(周 涛), and Yi-Cheng Zhang(张翼成)

推荐评估指标:
1、推荐系统评价指标综述. 朱郁筱,吕琳媛

2、Accurate is not always good:How Accuacy Metrics have hurt Recommender Systems

3、Evaluating Recommendation Systems. Guy Shani and Asela Gunawardana

4、Evaluating Collaborative Filtering Recommender Systems. JL Herlocker

推荐多样性和新颖性:
1. Improving recommendation lists through topic diversification. Cai-Nicolas Ziegler

Sean M. McNee, Joseph A.Konstan,Georg Lausen

  1. Fusion-based Recommender System for Improving Serendipity

  2. Maximizing Aggregate Recommendation Diversity:A Graph-Theoretic Approach

  3. The Oblivion Problem:Exploiting forgotten items to improve Recommendation diversity

  4. A Framework for Recommending Collections

  5. Improving Recommendation Diversity. Keith Bradley and Barry Smyth

推荐系统中的隐私性保护:
1、Collaborative Filtering with Privacy. John Canny

2、Do You Trust Your Recommendations? An Exploration Of Security and Privacy Issues in Recommender Systems. Shyong K “Tony” Lam, Dan Frankowski, and John Ried.

3、Privacy-Enhanced Personalization. Alfred Kobsa.etl

4、Differentially Private Recommender Systems:Building Privacy into the
Netflix Prize Contenders. Frank McSherry and Ilya Mironov Microsoft Research,
Silicon Valley Campus

5、When being Weak is Brave: Privacy Issues in Recommender Systems. Naren Ramakrishnan, Benjamin J. Keller,and Batul J. Mirza

推荐冷启动问题:
1.Tied Boltzmann Machines for Cold Start Recommendations. Asela Gunawardana.etl

2.Pairwise Preference Regression for Cold-start Recommendation. Seung-Taek Park, Wei Chu

3.Addressing Cold-Start Problem in Recommendation Systems. Xuan Nhat Lam.etl

4.Methods and Metrics for Cold-Start Recommendations. Andrew I. Schein, Alexandrin P opescul, Lyle H. U ngar

bandit(老虎机算法,可缓解冷启动问题):
1、Bandits and Recommender Systems. Jeremie Mary, Romaric Gaudel, Philippe Preux

2、Multi-Armed Bandit Algorithms and Empirical Evaluation

基于社交网络的推荐:
1. Social Recommender Systems. Ido Guy and David Carmel

  1. A Social Networ k-Based Recommender System(SNRS). Jianming He and Wesley W. Chu

  2. Measurement and Analysis of Online Social Networks.

  3. Referral Web:combining social networks and collaborative filtering

基于知识的推荐:
1、Knowledge-based recommender systems. Robin Burke

2、Case-Based Recommendation. Barry Smyth

3、Constraint-based Recommender Systems: Technologies and Research Issues. A. Felfernig. R. Burke

其他:
Trust-aware Recommender Systems. Paolo Massa and Paolo Avesani

关于找论文的一些建议:
看影响因子;看发表的期刊和会议;看论文作者以及作者的机构。
经典论文的引用一般也都不错。

下次整理下高质量推荐系统论文常发表的期刊和会议。以及有哪些比赛,有哪些大神。

你可能感兴趣的:(推荐系统)