图像分割_评价指标_PSNR峰值信噪比和SSIM结构相似度

PSNR

psnr是“Peak Signal to Noise Ratio”的缩写,即峰值信噪比,是一种评价图像的客观标准。
为了衡量经过处理后的影像品质,我们通常会参考PSNR值来衡量某个处理程序能否令人满意。PSNR的单位是dB,数值越大表示失真越小。n为每像素的比特数,一般的灰度图像取8,即像素灰阶数为256。它是原图像与被处理图像之间的均方误差相对于(2n-1)2的对数值(信号最大值的平方,n是每个采样值的比特数),所以PSNR值越大,就代表失真越少。
MATLAB用法的公式如下:

P S N R = 10 ∗ l o g 10 ( ( 2 n − 1 ) 2 / M S E ) PSNR=10*log10((2n-1)2/MSE) PSNR=10log10((2n1)2/MSE)

其中,MSE是原图像与处理图像之间均方误差。

优缺点

PSNR是最普遍,最广泛使用的评鉴画质的客观量测法,不过许多实验结果都显示,PSNR的分数无法和人眼看到的视觉品质完全一致,有可能PSNR较高者看起来反而比PSNR较低者差。这是因为人眼的视觉对于误差的敏感度并不是绝对的,其感知结果会受到许多因素的影响而产生变化(例如:人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响)。

Matlab代码

function [PSNR, MSE] = psnr(X, Y)
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% 计算峰值信噪比PSNR
% 将RGB转成YCbCr格式进行计算
% 如果直接计算会比转后计算值要小2dB左右(当然是个别测试)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
 if size(X,3)~=1   %判断图像时不是彩色图,如果是,结果为3,否则为1
   org=rgb2ycbcr(X);
   test=rgb2ycbcr(Y);
   Y1=org(:,:,1);
   Y2=test(:,:,1);
   Y1=double(Y1);  %计算平方时候需要转成double类型,否则uchar类型会丢失数据
   Y2=double(Y2);
 else              %灰度图像,不用转换
     Y1=double(X);
     Y2=double(Y);
 end
 
if nargin<2    
   D = Y1;
else
  if any(size(Y1)~=size(Y2))
    error('The input size is not equal to each other!');
  end
 D = Y1 - Y2; 
end
MSE = sum(D(:).*D(:)) / numel(Y1); 
PSNR = 10*log10(255^2 / MSE);

SSIM

SSIM(structural similarity index),结构相似性,是一种衡量两幅图像相似度的指标。该指标首先由德州大学奥斯丁分校的图像和视频工程实验室(Laboratory for Image and Video Engineering)提出。SSIM使用的两张图像中,一张为未经压缩的无失真图像,另一张为失真后的图像。

给定两个图像 x和y , 两张图像的结构相似性可按照以下方式求出

图像分割_评价指标_PSNR峰值信噪比和SSIM结构相似度_第1张图片

其中, μ X μ_X μX μ Y μ_Y μY分别表示图像 X X X Y Y Y的均值, σ X σ_X σX σ Y σ_Y σY分别表示图像 X X X Y Y Y的方差, σ X Y σ_XY σXY表示图像 X X X Y Y Y的协方差。

SSIM分别从亮度、对比度、结构三方面度量图像相似性。
图像分割_评价指标_PSNR峰值信噪比和SSIM结构相似度_第2张图片

C 1 C1 C1 C 2 C2 C2 C 3 C3 C3为常数,为了避免分母为0的情况,通常取 C 1 = ( K 1 ∗ L ) 2 C1=(K1∗L)2 C1=(K1L)2,$ C2=(K2∗L)2$, C 3 = C 22 C3=C22 C3=C22, 一般地K1=0.01, K2=0.03, L=255 则,

Matlab公式

function [ssimval, ssimmap] = ssim(varargin)
%SSIM Structural Similarity Index for measuring image quality
%   SSIMVAL = SSIM(A, REF) calculates the Structural Similarity Index
%   (SSIM) value for image A, with the image REF as the reference. A and
%   REF can be 2D grayscale or 3D volume images, and must be of the same
%   size and class. 
% 
%   [SSIMVAL, SSIMMAP] = SSIM(A, REF) also returns the local SSIM value for
%   each pixel in SSIMMAP. SSIMMAP has the same size as A.
%
%   [SSIMVAL, SSIMMAP] = SSIM(A, REF, NAME1, VAL1,...) calculates the SSIM
%   value using name-value pairs to control aspects of the computation.
%   Parameter names can be abbreviated.
%
%   Parameters include:
%
%   'Radius'                 - Specifies the standard deviation of 
%                              isotropic Gaussian function used for
%                              weighting the neighborhood pixels around a
%                              pixel for estimating local statistics. This
%                              weighting is used to avoid blocking
%                              artifacts in estimating local statistics.
%                              The default value is 1.5.
% 
%   'DynamicRange'           - Positive scalar, L, that specifies the
%                              dynamic range of the input image. By
%                              default, L is chosen based on the class of
%                              the input image A, as L =
%                              diff(getrangefromclass(A)). Note that when
%                              class of A is single or double, L = 1 by
%                              default.
% 
%   'RegularizationConstants'- Three-element vector, [C1 C2 C3], of 
%                              non-negative real numbers that specifies the
%                              regularization constants for the luminance,
%                              contrast, and structural terms (see [1]),
%                              respectively. The regularization constants
%                              are used to avoid instability for image
%                              regions where the local mean or standard
%                              deviation is close to zero. Therefore, small
%                              non-zero values should be used for these
%                              constants. By default, C1 = (0.01*L).^2, C2
%                              = (0.03*L).^2, and C3 = C2/2, where L is the
%                              specified 'DynamicRange' value. If a value
%                              of 'DynamicRange' is not specified, the
%                              default value is used (see name-value pair
%                              'DynamicRange').
% 
%   'Exponents'               - Three-element vector [alpha beta gamma],
%                               of non-negative real numbers that specifies
%                               the exponents for the luminance, contrast,
%                               and structural terms (see [1]),
%                               respectively. By default, all the three
%                               exponents are 1, i.e. the vector is [1 1
%                               1].
% 
%   Notes 
%   -----
%   1. A and REF can be arrays of upto three dimensions. All 3D arrays
%      are considered 3D volumetric images. RGB images will also be
%      processed as 3D volumetric images.
% 
%   2. Input image A and reference image REF are converted to
%      floating-point type for internal computation.
% 
%   3. For signed-integer images (int16), an offset is applied to bring the
%      gray values in the non-negative range before computing the SSIM
%      index.
% 
%   Example
%   ---------
%   This example shows how to compute SSIM value for a blurred image given
%   the original reference image.
% 
%   ref = imread('pout.tif');
%   H = fspecial('Gaussian',[11 11],1.5);
%   A = imfilter(ref,H,'replicate');
% 
%   subplot(1,2,1); imshow(ref); title('Reference Image');
%   subplot(1,2,2); imshow(A);   title('Blurred Image');
% 
%   [ssimval, ssimmap] = ssim(A,ref);
% 
%   fprintf('The SSIM value is %0.4f.\n',ssimval);
% 
%   figure, imshow(ssimmap,[]);
%   title(sprintf('SSIM Index Map - Mean SSIM Value is %0.4f',ssimval));

%   Class Support
%   -------------
%   Input arrays A and REF must be one of the following classes: uint8,
%   int16, uint16, single, or double. Both A and REF must be of the same
%   class. They must be nonsparse. SSIMVAL is a scalar and SSIMMAP is an
%   array of the same size as A. Both SSIMVAL and SSIMMAP are of class
%   double, unless A and REF are of class single in which case SSIMVAL and
%   SSIMMAP are of class single.
% 
%   References:
%   -----------
%   [1] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image 
%       Quality Assessment: From Error Visibility to Structural
%       Similarity," IEEE Transactions on Image Processing, Volume 13,
%       Issue 4, pp. 600- 612, 2004.
%
%   See also IMMSE, MEAN, MEDIAN, PSNR, SUM, VAR.

%   Copyright 2013-2014 The MathWorks, Inc. 

narginchk(2,10);

[A, ref, C, exponents, radius] = parse_inputs(varargin{:});

if isempty(A)
    ssimval = zeros(0, 'like', A);
    ssimmap = A;
    return;
end

if isa(A,'int16') % int16 is the only allowed signed-integer type for A and ref.
    % Add offset for signed-integer types to bring values in the
    % non-negative range.
    A = double(A) - double(intmin('int16'));
    ref = double(ref) - double(intmin('int16'));
elseif isinteger(A)
    A = double(A);
    ref = double(ref);
end
      
% Gaussian weighting function
gaussFilt = getGaussianWeightingFilter(radius,ndims(A));

% Weighted-mean and weighted-variance computations
mux2 = imfilter(A, gaussFilt,'conv','replicate');
muy2 = imfilter(ref, gaussFilt,'conv','replicate');
muxy = mux2.*muy2;
mux2 = mux2.^2;
muy2 = muy2.^2;

sigmax2 = imfilter(A.^2,gaussFilt,'conv','replicate') - mux2;
sigmay2 = imfilter(ref.^2,gaussFilt,'conv','replicate') - muy2;
sigmaxy = imfilter(A.*ref,gaussFilt,'conv','replicate') - muxy;

% Compute SSIM index
if (C(3) == C(2)/2) && isequal(exponents(:),ones(3,1))
    % Special case: Equation 13 from [1]
    num = (2*muxy + C(1)).*(2*sigmaxy + C(2));
    den = (mux2 + muy2 + C(1)).*(sigmax2 + sigmay2 + C(2));
    if (C(1) > 0) && (C(2) > 0)
        ssimmap = num./den;
    else
        % Need to guard against divide-by-zero if either C(1) or C(2) is 0.
        isDenNonZero = (den ~= 0);           
        ssimmap = ones(size(A));
        ssimmap(isDenNonZero) = num(isDenNonZero)./den(isDenNonZero);
    end
    
else
    % General case: Equation 12 from [1] 
    % Luminance term
    if (exponents(1) > 0)
        num = 2*muxy + C(1);
        den = mux2 + muy2 + C(1); 
        ssimmap = guardedDivideAndExponent(num,den,C(1),exponents(1));
    else 
        ssimmap = ones(size(A), 'like', A);
    end
    
    % Contrast term
    sigmaxsigmay = [];
    if (exponents(2) > 0)  
        sigmaxsigmay = sqrt(sigmax2.*sigmay2);
        num = 2*sigmaxsigmay + C(2);
        den = sigmax2 + sigmay2 + C(2); 
        ssimmap = ssimmap.*guardedDivideAndExponent(num,den,C(2),exponents(2));        
    end
    
    % Structure term
    if (exponents(3) > 0)
        num = sigmaxy + C(3);
        if isempty(sigmaxsigmay)
            sigmaxsigmay = sqrt(sigmax2.*sigmay2);
        end
        den = sigmaxsigmay + C(3); 
        ssimmap = ssimmap.*guardedDivideAndExponent(num,den,C(3),exponents(3));        
    end
    
end

ssimval = mean(ssimmap(:));
    
end

% -------------------------------------------------------------------------
function component = guardedDivideAndExponent(num, den, C, exponent)

if C > 0
    component = num./den;
else
    component = ones(size(num),'like',num);
    isDenNonZero = (den ~= 0);
    component(isDenNonZero) = num(isDenNonZero)./den(isDenNonZero);
end

if (exponent ~= 1)
    component = component.^exponent;
end

end

function gaussFilt = getGaussianWeightingFilter(radius,N)
% Get 2D or 3D Gaussian weighting filter

filtRadius = ceil(radius*3); % 3 Standard deviations include >99% of the area. 
filtSize = 2*filtRadius + 1;

if (N < 3)
    % 2D Gaussian mask can be used for filtering even one-dimensional
    % signals using imfilter. 
    gaussFilt = fspecial('gaussian',[filtSize filtSize],radius);
else 
    % 3D Gaussian mask
     [x,y,z] = ndgrid(-filtRadius:filtRadius,-filtRadius:filtRadius, ...
                    -filtRadius:filtRadius);
     arg = -(x.*x + y.*y + z.*z)/(2*radius*radius);
     gaussFilt = exp(arg);
     gaussFilt(gaussFilt 3)
    error(message('images:validate:tooManyDimensions','A and REF',3));
end

% Default values for parameters
dynmRange = diff(getrangefromclass(A));        
C = [];
exponents = [1 1 1];
radius = 1.5;

args_names = {'dynamicrange', 'regularizationconstants','exponents',...
              'radius'};

for i = 3:2:nargin
    arg = varargin{i};
    if ischar(arg)        
        idx = find(strncmpi(arg, args_names, numel(arg)));
        if isempty(idx)
            error(message('images:validate:unknownInputString', arg))
            
        elseif numel(idx) > 1
            error(message('images:validate:ambiguousInputString', arg))
            
        elseif numel(idx) == 1
            if (i+1 > nargin) 
                error(message('images:validate:missingParameterValue'));             
            end
            if idx == 1
                dynmRange = varargin{i+1};
                validateattributes(dynmRange,{'numeric'},{'positive', ...
                    'finite', 'real', 'nonempty','scalar'}, mfilename, ...
                    'DynamicRange',i);
                dynmRange = double(dynmRange);
                
            elseif idx == 2
                C = varargin{i+1};
                validateattributes(C,{'numeric'},{'nonnegative','finite', ...
                    'real','nonempty','vector', 'numel', 3}, mfilename, ...
                    'RegularizationConstants',i);                              
                C = double(C);                              
                              
            elseif idx == 3
                exponents = varargin{i+1};
                validateattributes(exponents,{'numeric'},{'nonnegative', ...
                    'finite', 'real', 'nonempty','vector', 'numel', 3}, ...
                    mfilename,'Exponents',i);
                exponents = double(exponents);
                
            elseif idx == 4
                radius = varargin{i+1};
                validateattributes(radius,{'numeric'},{'positive','finite', ...
                    'real', 'nonempty','scalar'}, mfilename,'Radius',i);
                radius = double(radius);
            end
        end    
    else
        error(message('images:validate:mustBeString')); 
    end
end

% If 'RegularizationConstants' is not specified, choose default C.
if isempty(C)
    C = [(0.01*dynmRange).^2 (0.03*dynmRange).^2 ((0.03*dynmRange).^2)/2];
end

end

参考文章1

参考文章2

你可能感兴趣的:(matlab,图像处理)