基于电影知识图谱的智能问答系统(四) --HanLP分词器

上一篇:基于电影知识图谱的智能问答系统(三) -- Spark环境搭建


一、什么是分词器?


       分词器,是将用户输入的一段文本,分析成符合逻辑的一种工具。到目前为止呢,分词器没有办法做到完全的符合人们的要求。和我们有关的分词器有英文的和中文的分词器:输入文本-关键词切分-去停用词-形态还原-转为小写中文的分词器分为:

单子分词    例:中国人 分成中,国,人

二分法人词 例:中国人 分成中国,国人

词典分词    例:中国人 分成中国,国人,中国人

现在用的是极易分词和庖丁分词

停用词:不影响语意的词


分词器有很多,比如中文分词器 IK Analyzer,有兴趣的可以看我的另一篇博文,其中有介绍它和Solr的结合使用


地址:Solr 7.2.1 配置中文分词器 IK Analyzer



二、什么是HanLP分词器?

首先:分词器自然语言处理

其次:HanLP也是一种分词器

最后:HanLP不仅能够分词,而且还可以标注单词的词性(这个很关键的,后面章节会再次讲到这个特性)


在线演示:http://hanlp.hankcs.com/


基于电影知识图谱的智能问答系统(四) --HanLP分词器_第1张图片


比如,在Java中随便来个句子使用HanLP进行分词如下:


基于电影知识图谱的智能问答系统(四) --HanLP分词器_第2张图片


这里我们还额外添加了自己的分词,比如好热啊中的“好热”,我们添加后并标注其词性为ng,当然ng是我们随便起的


执行这段代码,分词效果如下


基于电影知识图谱的智能问答系统(四) --HanLP分词器_第3张图片



这种词性标注有什么好处呢?  == 比如,所有人名均可以用nr这个标签来替代,思考下如下3个问题


1、张学友的生日是什么时候

2、巩俐的生日是什么时候

3、成龙的生日是什么时候


如果用HanLP分词后,相信 张学友 、巩俐、成龙的词性均是nr,不信的话,请看下面的截图




为什么HanLP会有这种能力呢? (博文下面会讲到如何在Spring-Boot项目中集成HanLP)


因为其有一堆的字/词典数据集,其中就包括了人名这个dict,如下


基于电影知识图谱的智能问答系统(四) --HanLP分词器_第4张图片


因此,针对1、2、3的问题,我们可以将其做成一个问题模板,如下


nr的生日是什么时候


于是乎,不管你问上述三个哪一个问题,我得到最终答案的步骤如下:


1、拿到原始句子(问题)

2、对原句子进行抽象,将人名用nr替换并抽象句子,比如张学友的生日是多少替换成nr的生日是多少

3、抽象句子匹配问题模板(一堆问题数据集合由Spark进行训练并计算),比如 nr 生日

4、问题模板还原成最终的问题,比如 nr 生日,替换其中的nr=张学友,最后效果就是 张学友 生日

5、拿到问题后,去图形数据库neo4j中查找问题的答案,比如


基于电影知识图谱的智能问答系统(四) --HanLP分词器_第5张图片



项目中使用HanLP+Spark的效果如下


基于电影知识图谱的智能问答系统(四) --HanLP分词器_第6张图片



前端展示如下



基于电影知识图谱的智能问答系统(四) --HanLP分词器_第7张图片



三、HanLP下载安装



官网下载地址:HanLP-汉语言处理包


这里我们采用第二种方式下载



基于电影知识图谱的智能问答系统(四) --HanLP分词器_第8张图片



(1)由于我们要集成到Spring-Boot中,因此,我们不需要下载jar包,而是通过pom依赖进行jar添加,而这里,我们需要下载hanlp的配置文件


基于电影知识图谱的智能问答系统(四) --HanLP分词器_第9张图片



(2)下载完配置文件后,我们需要下载HanLP的字典数据集


github下载地址:https://github.com/hankcs/HanLP/releases


打开地址,我们找到数据包的下载链接:


基于电影知识图谱的智能问答系统(四) --HanLP分词器_第10张图片




这个数据集有点大,下载会慢一点,请耐心等待下载完成



基于电影知识图谱的智能问答系统(四) --HanLP分词器_第11张图片



(3)上述两步完成后,接下来就是集成到我们的项目中使用了





四、Spring-Boot集成HanLP



(1)pom依赖





	junit
	junit



	com.hankcs
	hanlp
	portable-1.6.3



(2)添加HanLP属性配置文件【基于上述下载下来的】



基于电影知识图谱的智能问答系统(四) --HanLP分词器_第12张图片



基于电影知识图谱的智能问答系统(四) --HanLP分词器_第13张图片



(3)hanlp.properties属性文件说明


其实也没有上面好说明的,文件里面的注释已经很详细了,唯一注意一点的是这个地方:


每次更新自定义的新词典xxx.txt的内容时,要删除同目录下的词典缓存文件CustomDictionary.txt.bin


删除后,重启项目会报一个警告的错误,我们不用理会,由于HanLP会加载数据集到内存中,因此启动的过程会有点慢,等待HanLP加载完数据后,我们就可以使用它了


基于电影知识图谱的智能问答系统(四) --HanLP分词器_第14张图片





五、HanLP单元测试


HanLPTest.java


import com.hankcs.hanlp.HanLP;
import com.hankcs.hanlp.dictionary.CustomDictionary;
import com.hankcs.hanlp.seg.Segment;
import com.hankcs.hanlp.seg.common.Term;

public class HanLPTest {

	@Test
	public void TestA(){
		String lineStr = "明天虽然会下雨,但是我还是会看周杰伦的演唱会。";
		try{
			Segment segment = HanLP.newSegment();
		    segment.enableCustomDictionary(true);
		    /**
		     * 自定义分词+词性
		     */
		    CustomDictionary.add("好热","ng 0");
			List seg = segment.seg(lineStr);
			for (Term term : seg) {
				System.out.println(term.toString());
			}
		}catch(Exception ex){
			System.out.println(ex.getClass()+","+ex.getMessage());
		}		
	}
}


执行结果如下:


明天/t
虽然/c
会/v
下雨/vi
,/w
但是/c
我/rr
还是/c
会/v
看/v
周杰伦/nr
的/ude1
演唱会/n
。/w

下一篇:基于电影知识图谱的智能问答系统(五) --Spark朴素贝叶斯分类器

你可能感兴趣的:(Spring-Boot,Neo4j,基于电影知识图谱的智能问答系统)