- WebRTC 语音激活检测(VAD)算法
u013250861
Audiowebrtc算法语音识别
语音激活检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率。激活检测属于语音处理系统的前端操作,在语音检测领域意义重大。但是目前的语音激活检测,尤其是检测人声开始和结束的端点始终是属于技术难点,各家公司始终处于能判断,但是不敢保证判别准确性的阶段。通常搭建机器人聊天系统主要包括以下三个方面:语音转文字(ASR/STT)语义内容(NLU/NLP)文字转语音(TTS)
- AI芯片设计与神经网络加速
华清远见成都中心
人工智能神经网络深度学习
随着人工智能技术的飞速发展,神经网络在图像识别、语音处理、自然语言理解等众多领域取得了显著成就。然而,神经网络的大规模计算需求对传统计算芯片提出了严峻挑战。AI芯片应运而生,其设计目的便是为神经网络提供高效的计算支持,实现神经网络的加速运行。深入研究AI芯片设计与神经网络加速技术,对于推动人工智能技术的广泛应用和进一步发展具有重要意义。一、AI芯片设计基础·计算架构:是AI芯片设计的核心。常见的计
- 语音活动检测模型SileroVAD
大囚长
大模型人工智能
SileroVAD是一款专注于语音活动检测(VAD)的轻量级开源模型,凭借其高效率、低延迟和跨平台特性,成为实时语音处理系统的核心组件。一、核心功能与技术优势轻量高效SileroVAD模型体积仅1.8MB,支持1ms内处理30ms音频块,适用于边缘设备实时处理。其推理速度在单线程CPU上可达2-3倍于PyTorch版本(ONNX优化后),且支持批量处理以提升吞吐量。高精度检测基于深度学习(CNN/
- sherpa-onnx开源语音处理框架研究报告:从技术解析到应用实践
chanalbert
AI开源分享开源pythonc++java
1项目概述与技术背景开源地址:https://github.com/k2-fsa/sherpa-onnxsherpa-onnx是一个基于下一代Kaldi和ONNX运行时的开源语音处理框架,由K2-FSA团队开发并维护。该项目专注于提供跨平台、高效率的语音处理能力,支持在完全离线的环境中运行语音识别(ASR)、文本转语音(TTS)、说话人识别、语音活动检测(VAD)等多项功能。与依赖云服务的传统语音
- Whisper使AI人工智能语音识别更精准可靠
AI天才研究院
AI大模型企业级应用开发实战人工智能whisper语音识别ai
Whisper使AI人工智能语音识别更精准可靠关键词:Whisper、语音识别、AI模型、自动语音识别(ASR)、深度学习、Transformer、语音处理摘要:本文深入探讨了OpenAI开发的Whisper语音识别系统如何通过创新的深度学习架构显著提升语音识别的准确性和可靠性。我们将从技术原理、模型架构、实现细节到实际应用场景,全面分析Whisper如何克服传统语音识别系统的局限性,以及它为何成
- 音元分析法的价值
音元系统
音元系统#音元输入法人工智能语音识别语言模型自然语言处理
音元分析法的价值把现行的二维音节结构:音调维的声调与音质维的(声母和韵母)构成的音节,其中,声母由音素或音位充当/韵母由音素或音位构成,分析成或变换成一维的(音值维的)音元或片音构成的序列。这个项目有价值吗?AI分析AI的看法是:将音节的二维结构(声调+音质)转换为一维音元序列的方法,从项目结构看,当前项目已经建立了完整的语音处理系统,包括yinjie.py、shouyin.py、ganyin.p
- 【技术观点】AI大语言模型10大安全风险的思考
yxiaoyu__
人工智能语言模型安全
大模型应用已经真实来到我们每个人身边,在自然语言处理、图像识别、语音处理等领域展现出了前所未有的能力,影响着各行各业的发展。随着大模型应用的日益广泛,其安全问题也变得愈发重要。大模型训练需要大量数据,可能包含敏感信息(如个人信息、商业秘密等),造成信息泄漏;攻击者可以通过精心设计的输入(对抗性样本)欺骗AI模型,导致错误的输出,对自动驾驶、医疗诊断等构成严重威胁;大模型还可能被用于生成虚假信息、传
- 探索语音处理新纪元:WebRTC Audio Processing for Python
金畏战Goddard
探索语音处理新纪元:WebRTCAudioProcessingforPython去发现同类优质开源项目:https://gitcode.com/在数字时代,清晰、高效的音频通信是连接世界的基石。今天,我们为您介绍一个强大而灵活的开源工具——WebRTCAudioProcessingforPython,它将WebRTC先进的音频处理能力无缝引入Python生态系统,解锁高质量音频应用的新可能。项目介
- 强大而全面的语音处理工具——Sherpa-Onnx
郜里富
强大而全面的语音处理工具——Sherpa-Onnx项目地址:https://gitcode.com/gh_mirrors/sh/sherpa-onnx在人工智能的浪潮中,语音技术已成为连接人机的重要桥梁。今天,我们要向您隆重推荐一个开源宝藏——Sherpa-Onnx,一个集多种语音功能于一体的强大本地运行库,完美适配从服务器到边缘设备的各种场景。项目介绍Sherpa-Onnx是一款开源的语音处理神
- 手把手带你玩转声网ESP32大模型+TEN语音交互——零硬件基础也能懂!以AI智能眼镜为例
夜信431
交互人工智能stm32智能硬件深度学习
一、方案全景解析——智能眼镜的"最强大脑"(附硬件架构图:智能眼镜+ESP32-S3核心板+声网SDK)这套开源方案的核心是将大模型塞进智能眼镜!就像给你的眼镜装了个SiriProMax:硬件核心:ESP32-S3芯片(性能≈手机芯片的1/5,但功耗仅0.1W)魔法组件:声网SDK(让眼镜能像微信语音通话一样实时对话)创新点:通过按键唤醒+本地语音处理+云端大模型推理(延迟<300ms)二、硬件小
- AIGC 技术解析:Whisper 的低延迟语音识别
AI大模型应用之禅
AIGCwhisper语音识别
AIGC技术解析:Whisper的低延迟语音识别关键词:AIGC、Whisper、语音识别、低延迟、Transformer、端到端学习、语音处理摘要:本文深入解析OpenAIWhisper模型的低延迟语音识别技术。我们将从语音识别的基本原理出发,详细探讨Whisper的架构设计、核心算法、数学模型以及实现细节。文章包含完整的Python代码示例,展示如何在实际项目中应用Whisper进行低延迟语音
- AIxBoard部署BLIP模型进行图文问答
vslyu
深度学习openvino
一、AIxBoard简介AIxBoard(X板)是一款IA架构的人工智能嵌入式开发板,体积小巧功能强大,可让您在图像分类、目标检测、分割和语音处理等应用中并行运行多个神经网络。它是一款面向专业创客、开发者的功能强大的小型计算机,借助OpenVINO工具套件,CPU、iGPU都具备强劲的AI推理能力,基于AI的产品进行原型设计并将其快速推向市场的理想解决方案。二、多模态模型简介近年来,计算机视觉和自
- 在 React Native 中使用 Whisper 进行语音识别
pxr007
reactnativewhisper语音识别
在本文中,我们将使用Whisper创建语音转文本应用程序。Whisper需要Python后端,因此我们将使用Flask为应用程序创建服务器。ReactNative作为构建移动客户端的框架。我希望您喜欢创建此应用程序的过程,因为我确实这样做了。让我们直接深入研究它。什么是语音识别?语音识别使程序能够将人类语音处理成书面格式。语法、句法、结构和音频对于理解和处理人类语音至关重要。语音识别算法是计算机科
- 华为HCIP-AI认证题库中的部分问题
2301_82241859
程序员华为人工智能
D:类间方差答案:D6、语音识别技术就是让机器通过识别和理解把文本转换为语音的技术。A:TrueB:False答案:B8、由于现代的语音处理技术都以数字计算为基础,因此也称其为数字语音信号处理。A:TrueB:False答案:A9、不属于语音声学特征的是?A:频率B:语义C:时长D:振幅答案:B10、属于语言学内容的是?A:文字B:语音C:词汇D:语法答案:A,B,C,D11、语音合成方法有哪些?
- 深度学习芯片的数据预取机制与片上缓存交错策略研究
学习ing1
深度学习缓存智能电视
1.引言1.1研究背景与意义随着人工智能的快速发展,深度学习在图像识别、语音处理、自然语言处理等领域取得了巨大成功。深度学习芯片作为实现深度学习算法的关键硬件平台,其性能直接影响到深度学习系统的效率和应用范围。深度学习算法通常需要处理大量的数据和复杂的计算任务,这使得数据传输和存储成为性能瓶颈。数据预取机制和片上缓存交错策略是解决这一瓶颈的重要手段。数据预取机制通过预测处理器未来需要的数据并提前加
- RISC-V NPU语音转换实战指南:从芯片选型到代码优化
Android洋芋
RISC-V架构EIC7700X芯片RISC-VNPU语音DSP/NPU加速器TensorFlow框架PyTorch
简介RISC-V架构凭借其开源性、模块化和高性能,在AI语音处理领域展现出巨大潜力。本项目将探索如何在国产RISC-V服务器上实现语音转换模型的NPU适配与优化,涉及端到端模型设计、硬件驱动开发、INT8量化算子实现及深度学习框架集成等核心技术。通过结合EIC7700X芯片的硬件特性与语音转换任务特点,打造高性能、低延迟的语音处理系统,满足边缘计算场景下的实时语音转换需求。一、RISC-V架构与E
- 快速了解GPT-4o和GPT-4区别
rs勿忘初心
#AI大模型人工智能chatgptGPT-4oGPT4与GPT4o区别gpt4介绍
GPT-4o简介在5月14日的OpenAI举行春季发布会上,OpenAI在活动中发布了新旗舰模型“GPT-4o”!据OpenAI首席技术官穆里·穆拉蒂(MuriMurati)介绍,GPT-4o在继承GPT-4强大智能的同时,进一步提升了文本、图像及语音处理能力,为用户带来更加流畅、自然的交互体验。GPT-4o的“o”代表“omni”,源自拉丁语“omnis”。在英语中“omni”常被用作词根,用来
- 智能语音处理+1.3用SpeechLib实现文本转语音(100%教会)
胡萝卜不甜
智能语音处理语音识别人工智能python机器学习
欢迎来到智能语音处理系列的第三篇文章(用SpeechLib实现文本转语音)这是前两篇文章的地址:第一篇:智能语音处理+1.1下载需要的库(100%实现)-CSDN博客第二篇:智能语音识别+1.2用SAPI实现文本转语音(100%教会)-CSDN博客不好意思啊,各位读者,没把握好力度,原本预设的3篇文章,预计会多出两章.请大家见谅,一.简单介绍使用的库comtypes是另一个Python库,用于操作
- 【语音识别】基于matlab男女声在线识别【含Matlab源码 8997期】
Matlab研究室
matlab
欢迎来到Matlab研究室博客之家✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码论文复现程序定制期刊写作科研合作扫描文章底部QQ二维码或私信博主。个人主页:Matlab研究室代码获取方式:扫描文章底部QQ二维码或私信博主⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。更多Matlab语音处理仿真内容点击①Matlab
- 主流大模型架构
Jeremg
架构
什么是大模型架构大模型架构是指用于构建大规模人工智能模型的特定结构和设计模式,旨在处理海量数据、学习复杂的模式和关系,并实现强大的语言理解、生成、图像识别、语音处理等多种智能任务。以下是一些常见的大模型架构的特点、组成和应用:特点大规模参数:包含大量的参数,通常数以亿计甚至更多,以学习丰富的知识和模式,例如GPT-3拥有1750亿个参数。强大的表示能力:能够对各种类型的数据进行高效的表示和处理,捕
- Sherpa-ONNX:说话人识别与语音识别自动开启(VAD)+ Python API 完整指南
一只蜗牛儿
语音识别python人工智能
介绍Sherpa-ONNX是一个基于ONNX的轻量级语音识别框架,支持多种语音处理任务,包括说话人识别(SpeakerRecognition)和自动语音识别(AutomaticSpeechRecognition,ASR)。在本指南中,我们将重点介绍如何使用Sherpa-ONNX进行说话人识别、自动开启语音识别(VAD)以及如何通过PythonAPI进行操作。安装环境在开始之前,确保你的系统上已安装
- AI API:快速集成智能化功能的开发利器
桂花饼
AIGCAIAPI人工智能AIGC语言模型AI作画
AIAPI(ArtificialIntelligenceApplicationProgrammingInterface,人工智能应用程序接口)是应用程序接口的一种,专门用于提供人工智能相关功能的开发接口。它允许开发者利用现有的AI模型、工具或服务,将这些功能集成到自己的应用程序中,并为用户带来智能化的体验。AIAPI的核心功能主要与AI技术相关,比如自然语言处理(NLP)、计算机视觉、语音处理、机
- 云原生周刊:基于 KubeSphere LuBan 架构打造DeepSeek 插件
云计算
开源项目推荐KubeAIKubeAI是一个K8s上的AI推理操作器,旨在简化在生产环境中部署和管理大型语言模型(LLM)、向量嵌入和语音处理等机器学习模型。它提供与OpenAI兼容的API,支持在CPU和GPU上运行,并具备按需自动扩缩容的能力。KubeAI无需依赖Istio、Knative等其他系统,能够在几乎任何K8s集群中开箱即用。此外,它内置了模型代理,优化了键值缓存利用率,从而显著提升系
- Meta 计划在 Llama 4 中引入改进的语音功能,接近双向自然对话
timer_017
llama
据英国《金融时报》3月7日报道,Meta首席产品官ChrisCox透露,Llama4将是一个“全能模型”,语音功能将是原生的1。关于Meta计划在Llama4中引入改进语音功能并接近双向自然对话,具体情况如下1:功能特点原生语音处理:Llama4能够直接处理语音信息,无需先将语音转换为文本再输入模型处理,最后又将文本转换回语音,可极大提升语音交互的效率和流畅度。双向自然对话:Meta一直特别注重使
- 【深度学习】Hopfield网络:模拟联想记忆
T-I-M
深度学习人工智能
Transformer优化,什么是稀疏注意力?Transformer模型自2017年被提出以来,已经成为自然语言处理(NLP)领域的核心架构,并在计算机视觉、语音处理等其他领域也取得了显著的成功。然而,随着模型规模的不断增大和任务复杂性的提升,Transformer的计算成本和内存需求也随之激增。为了解决这一问题,研究者们提出了多种优化方法,其中稀疏注意力(SparseAttention)是一种备
- Transformer模型详解
Yuki-^_^
Transformer模型详解人工智能transformer深度学习人工智能
导读Transformer在许多的人工智能领域,如自然语言处理(NaturalLanguageProcessing,NLP)、计算机视觉(ComputerVision,CV)和语音处理(SpeechProcessing,SP)取得了巨大的成功。因此,自然而然的也吸引了许多工业界和学术界的研究人员的兴趣。到目前为止,已经提出了大量基于Transformer的相关工作和综述。本文基于邱锡鹏[1]老师近
- 数字人源头厂商-源码出售源码交付-OEM系统贴牌
余~~18538162800
音视频线性代数网络人工智能
引言在数字化浪潮中,数字人正成为创新应用的焦点。从虚拟偶像活跃于舞台,到虚拟客服在各行业的普及,数字人展现出巨大的潜力。搭建数字人源码系统,是融合多领域前沿技术的复杂工程,涵盖图形学、人工智能、语音处理等。本文将深入剖析数字人源码搭建的技术开发细节,为开发者提供全面且深入的技术指南。技术体系架构感知层语音识别:技术选型:采用Kaldi语音识别框架,它是一个开源且灵活的工具包,支持多种语言和声学模型
- 数字人源码源头搭建技术全攻略,支持OEM
余18538162800)
python
引言在人工智能与多媒体技术迅猛发展的当下,数字人已从概念构想逐步走进现实应用,广泛渗透于娱乐、教育、医疗、金融等多个领域。搭建数字人源码系统是一项综合性的技术工程,融合了计算机图形学、人工智能、语音处理等多学科前沿技术。本文将深入剖析数字人源码搭建的技术细节,为开发者提供详尽的技术开发指南。技术选型与架构设计图形渲染技术实时渲染引擎:Unity:作为一款跨平台的实时渲染引擎,Unity在数字人开发
- RealtimeSTT:实时语音转文本的开源神器,轻松实现高效语音处理
AI云极
【开源系列】语音识别开源
在语音技术飞速发展的时代,实时语音转文本(Speech-to-Text,简称STT)技术已逐渐成为语音助手、在线会议记录、字幕生成等应用的核心功能。今天要为大家推荐的是一款开源的实时语音转文本工具——RealtimeSTT,它功能强大且易于集成,为开发者提供了快速构建实时语音处理应用的能力。项目地址:GitHub-RealtimeSTT一、什么是RealtimeSTT?RealtimeSTT是一款
- 【电力负荷预测】时间卷积双向门控循环单元融合注意力机制TCN-BiGRU-Attention负荷多变量时间序列预测【含Matlab源码 4752期】
Matlab领域
matlab
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。个人主页:海神之光代码获取方式:海神之光Matlab王者学习之路—代码获取方式⛳️座右铭:行百里者,半于九十。更多Matlab仿真内容点击Matlab图像处理(进阶版)路径规划(Matlab)神经网络预测与分类(Matlab)优化求解(Matlab)语音处理(Matlab)信号处理(Matlab)车间调度
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc