- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 机器学习小组第三周:简单的数据预处理和特征工程
-Helslie
机器学习机器学习
学习目标●无量纲化:最值归一化、均值方差归一化及sklearn中的Scaler●缺失值处理●处理分类型特征:编码与哑变量●处理连续型特征:二值化与分段学习资料首先,参考:《机器学习的敲门砖:归一化与KD树》及《特征工程系列:特征预处理(上)》中相关部分。其次,其他知识点可参考推荐博文:sklearn中的数据预处理和特征工程。20200311数据归一化在量纲不同的情况下,对于部分算法不能反映样本中每
- 机器学习基础(四)——决策树与随机森林
Bayesian小孙
机器学习基础决策树机器学习随机森林
决策树与随机森林文章目录决策树与随机森林一、知识概要(一)二、决策树使用的算法三、sklearn决策树API四、决策树的案例1.数据清洗2.特征工程3.调用决策树API五、集成学习方法-随机森林1.知识概要(二)2.集成学习API3.随机森林的案例importpandasaspdfromsklearn.feature_extractionimportDictVectorizerfromsklear
- Spark MLlib 特征工程系列—特征转换VectorSizeHint
不二人生
Spark实战spark-ml机器学习spark
SparkMLlib特征工程系列—特征转换VectorSizeHintVectorSizeHint是Spark提供的一个特征转换器,用于指定向量列的大小(即维度)。在一些特征转换和建模过程中,要求输入的向量必须有固定的大小。当数据中包含不同大小的向量时,Spark可能无法自动推断出向量的正确大小。这时,VectorSizeHint可以显式地声明向量的大小,确保后续的操作能够顺利进行。为什么需要使用
- 【机器学习】特征提取 特征降维
de-feedback
机器学习人工智能
特征工程特征工程是将原始数据转化为可以用于机器学习的数字特征,比如字典的特征提取,文档的特征提取等。字典特征提取把字典的每个唯一的键作为数据集特征的一个维度,有这个维度的就为1,没有就是0。其他相同的键,该维度的值就是其键值。这样的操作把字典样本的每一条数据转化为了矩阵,但是矩阵中含有大量的0(因为数据中的键和值有很多不同),所以称之为稀疏矩阵为了保存数据的高效,一般使用三元组表存储。保存非零数据
- 【机器学习】特征工程的基本概念以及LASSO回归和主成分分析优化方法
Lossya
机器学习回归人工智能算法特征工程
引言特征工程是机器学习中的一个关键步骤,它涉及到从原始数据中提取和构造新的特征,以提高模型的性能和预测能力LASSO(LeastAbsoluteShrinkageandSelectionOperator)回归是一种用于回归分析的线性模型,它通过引入L1正则化(Lasso正则化)来简化模型并减少过拟合的风险主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术
- AutoML原理与代码实例讲解
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AutoML原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着数据量的爆炸式增长和算法的日益复杂,机器学习在各个领域的应用越来越广泛。然而,机器学习模型的开发过程往往需要大量的专业知识和经验。数据预处理、特征工程、模型选择、参数调优等步骤都需要人工进行,这使得机器学习模型的开发变得复杂且耗时。为了解决这
- python库——sklearn的关键组件和参数设置
零 度°
pythonpythonsklearn
文章目录模型构建线性回归逻辑回归决策树分类器随机森林支持向量机K-近邻模型评估交叉验证性能指标特征工程主成分分析标准化和归一化scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。模
- 【机器学习】探索数据矿藏:Python中的AI大模型与数据挖掘创新实践
C_GUIQU
机器学习人工智能python
前言:探索数据矿藏1.数据获取与预处理:AI大模型的燃料1.1数据获取:多样性与规模并重1.2数据清洗与处理:提升数据质量1.3特征工程:挖掘数据的深层次信息1.4自动化特征工程:AI与特征工程的结合2.模型训练与优化:构建智能的大脑2.1模型选择:大模型的基础构建2.2模型训练:从数据到智能的转化2.3⚙️模型优化:精益求精的智能化提升2.4模型解释与可视化:揭示黑盒的内部3实际应用案例:AI大
- 深度学习的一个完整过程通常包括以下几个步骤
longerVR
DL深度学习人工智能
深度学习的一个完整过程通常包括以下几个步骤:问题定义和数据收集:定义清晰的问题,明确任务的类型(分类、回归、聚类等)以及预期的输出。收集和整理用于训练和评估模型的数据集。确保数据集的质量,进行预处理和清理。数据预处理:处理缺失值、异常值和重复数据。进行特征工程,选择、转换或创建合适的特征。将数据集划分为训练集、验证集和测试集。选择模型架构:根据问题的性质选择适当的深度学习模型架构,如卷积神经网络(
- 【机器学习】多元线性回归
Mount256
#机器学习机器学习线性回归人工智能
文章目录多元线性回归模型(multipleregressionmodel)损失/代价函数(costfunction)——均方误差(meansquarederror)批量梯度下降算法(batchgradientdescentalgorithm)特征工程(featureengineering)特征缩放(featurescaling)正则化线性回归(regularizationlinearregress
- 吴恩达机器学习全课程笔记第一篇
亿维数组
MachineLearning机器学习笔记人工智能
目录前言P1-P8监督学习无监督学习P9-P14线性回归模型成本(代价)函数P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【吴恩达机器学习】教程过一遍,并把笔记记录于此,本笔记将会把此课程每一p的重点内容及其截屏记录于此,以供大家参考和本人日后复
- 零基础入门金融风控-贷款违约预测Task2 数据分析
一缕阳光lyz
数据分析数据挖掘
Task2数据分析此部分为零基础入门金融风控的Task2数据分析部分,带你来了解数据,熟悉数据,为后续的特征工程做准备,欢迎大家后续多多交流。赛题:零基础入门数据挖掘-零基础入门金融风控之贷款违约目的:1.EDA价值主要在于熟悉了解整个数据集的基本情况(缺失值,异常值),对数据集进行验证是否可以进行接下来的机器学习或者深度学习建模.2.了解变量间的相互关系、变量与预测值之间的存在关系。3.为特征工
- 【吴恩达·机器学习】第二章:多变量线性回归模型(选择学习率、特征缩放、特征工程、多项式回归)
Yaoyao2024
机器学习线性回归人工智能
博主简介:努力学习的22级计算机科学与技术本科生一枚博主主页:@Yaoyao2024每日一言:勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。——《朗读者》0、声明本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义和自己的理解。在上完课后对课程内容进行回顾和整合,从而加深自己对知识的理解,也方便自己以及后续的同学们复习和回顾。课程地址2022吴恩达
- 深度学习从入门到不想放弃-1
周博洋K
深度学习人工智能
基本功总是很香的,良好的基础才能决定上层建筑的质量和高度。从今天开始陆续连载一些深度学习的基础,包括概念,数学原理,代码,最近也确实没什么热点可以蹭先看机器学习和深度学习的对比:"数据和特征决定了机器学习的上限,而模型与算法则是逼近这个上限而已",机器学习和深度学习的本质区别之一是特征工程,而特征工程又是决定最终结果好坏的最重要的因素之一;上图最上面描述是机器学习的流程,如果让一个计算机理解输入的
- 《区块链公链数据分析简易速速上手小册》第8章:实战案例研究(2024 最新版)
江帅帅
区块链数据分析数据挖掘人工智能pythonweb3机器学习
文章目录8.1案例分析:投资决策支持8.1.1基础知识8.1.2重点案例:股票市场趋势预测准备工作实现步骤步骤1:加载和准备数据步骤2:特征工程步骤3:训练模型步骤4:评估模型结论8.1.3拓展案例1:基于情感分析的投资策略准备工作实现步骤
- 机器学习中的特征工程
qq_44980515
机器学习python数据分析人工智能
目录一、特征工程目标二、特征工程内容(一)异常处理(二)特征标准化/归一化(三)数据分桶(四)缺失值处理(五)特征构造(六)特征筛选(特征选择)(七)降维三、代码示例(一)导入数据(二)删除异常值(三)特征构造(四)特征筛选1.过滤式2.包裹式一、特征工程目标对于特征进行进一步分析,并对于数据进行处理。完成对于特征工程的分析,并对于数据进行一些图表或者文字总结。特征工程的主要目的还是在于将数据转换
- FFA 2023 专场解读:AI 特征工程、数据集成
flink大数据
今年FlinkForwardAsia(以下简称FFA)重新回归线下,将于12月8-9日在北京望京凯悦酒店举办。FlinkForwardAsia2023大会议程已正式上线!FlinkForward是由Apache官方授权的ApacheFlink社区官方技术大会,作为最受ApacheFlink社区开发者期盼的年度峰会之一,FFA2023将持续集结行业最佳实践以及Flink最新技术动态,是中国Flink
- 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(1)搭建一个机器学习模型
giszz
人工智能学习笔记人工智能学习笔记
今天学习的是,如何搭建一个机器学习模型。主要有以上的步骤:原始数据采集特征工程数据预处理特征提取特征转换(构造)预测识别(模型训练和测试)在实际工作中,特征比模型更重要。数据和特征的选择,已经决定了模型的天花板,模型算法只是去逼近这个上限。在上述的特征工程中:数据预处理,就是去除数据的噪声,例如文本中的错误、不再使用的词语等;特征提取,就是从原始数据中提取一些有效的特征。例如图像分类中,提取边缘、
- 基于决策树的金融市场波动性预测与应用
OverlordDuke
机器学习决策树决策树算法机器学习
基于决策树的金融市场波动性预测与应用项目背景与意义数据概述与分析数据来源数据特征数据预处理与特征工程模型训练与评估结果与应用总结LightGBM是一个机器学习算法库,用于梯度提升机(GradientBoostingMachine)的实现。梯度提升机是一种集成学习方法,通过串行训练多个弱学习器(通常是决策树),每次学习的模型都试图纠正前一次模型的错误,从而逐步提升整体模型的性能。LightGBM算法
- 探索XGBoost:时间序列数据建模
Echo_Wish
Python笔记Python算法python算法开发语言
导言XGBoost是一种强大的机器学习算法,广泛应用于各种领域的数据建模任务中。但是,在处理时间序列数据时,需要特别注意数据的特点和模型的选择。本教程将深入探讨如何在Python中使用XGBoost建模时间序列数据,包括数据准备、特征工程和模型训练等方面,并提供相应的代码示例。准备数据在处理时间序列数据之前,首先需要准备数据。通常,时间序列数据是按照时间顺序排列的,每个时间点都有相应的观测值。以下
- 葫芦书第一章——特征工程
单调不减
葫芦书是机器学习岗位面试的必读书,第一遍读,就当作对自己这四个月以来入门机器学习的知识测验,顺便查漏补缺。葫芦书比较好的一点是它的写作是通过问答方式进行的,就像一场模拟面试一样,而这些问题可能是我自学相关知识的时候没有细想过的,通过这些问题我也可以发现自己的知识盲区,再查阅相关资料。闲言少叙,开始啦。特征工程,顾名思义,是对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。从本
- task3 特征工程
1598903c9dd7
1.采用tsfresh工具包提取时间序列特征导入工具包:提取特征:融合之前单变量特征之后,预测变差......哭
- task 13 集成学习
罐罐儿111
蒸汽量预测1.特征工程一般流程:1.去掉无用特征2.去掉冗余特征3.利用存在的特征、特征转换、内容中的特征以及其他数据源生成新特征4.特征转换(数值化、类别转换、归一化)5.特征处理(异常值、最大值、最小值、缺失值)观察特征核密度估计,已知散点图,做回归,要求连线尽可能平滑,大致观察数据的分布情况。在本例中,通过核密度估计,观察训练集与测试集数据的分布情况,从而删除不具有相似分布的属性值计算相关性
- 机器学习各种算法汇总模板
怎么菜成这样
机器学习机器学习python算法随机森林支持向量机
机器学习算法模板包含了KNN,线性回归,逻辑回归,朴素贝叶斯,决策树,支持向量机,随机森林,kmeans,集成算法各种算法,特征工程,评估方式任你选择!!!#导包fromsklearn.neighborsimportKNeighborsClassifierfromsklearn.linear_modelimportLinearRegressionfromsklearn.naive_bayesimp
- 特征工程:数据平衡
林浩杨
数据探索与可视化机器学习python人工智能机器学习算法数据挖掘
目录一、前言二、正文Ⅰ.基于过采样算法Ⅱ.基于欠采样算法Ⅲ..基于过采样和欠采样的综合算法三、结语一、前言大多数情况下,使用的数据集是不完美的,会出现各种各样的问题,尤其针对分类问题的时候,会出现类别不平衡的问题。例如:在垃圾邮件分类时,垃圾邮件数据会有较少的样本量,从而导致两种类型的邮件数据量差别很大;在欺诈监测数据集中,往往包含的欺诈样本并没有那么多。处理这类数据集的分类的时候,需要对数据集的
- 掌握XGBoost:特征工程与数据预处理
Echo_Wish
Python算法Python笔记机器学习python人工智能
掌握XGBoost:特征工程与数据预处理导言在应用XGBoost模型之前,特征工程和数据预处理是至关重要的步骤。良好的特征工程和数据预处理可以显著提高模型的性能。本教程将介绍在Python中使用XGBoost进行特征工程和数据预处理的中级教程,通过代码示例详细说明各种技术和方法。安装XGBoost首先,请确保您已经安装了Python和pip。然后,您可以使用以下命令安装XGBoost:pipins
- 梯度提升树系列6——GBDT在异常检测领域的应用
theskylife
数据挖掘机器学习数据挖掘GBDT分类python
目录写在开头1异常检测的基本概念1.1定义和目标1.2GBDT在异常检测中的适用性2信用卡欺诈检测案例分析2.1场景介绍2.2收集数据和特征工程2.3进行异常值识别2.4模型效果评估2.5模型优化3策略和技巧4面临的挑战和解决方案4.1数据不平衡4.2过拟合4.3模型解释性写在最后在如今数据驱动的时代,异常检测成为了保障系统安全的关键技术,尤其在金融安全、网络安全等领域中扮演着至关重要的角色。梯度
- 【深度学习:掌握监督学习】掌握监督学习综合指南
jcfszxc
深度学习知识专栏深度学习学习人工智能
【深度学习:掌握监督学习】掌握监督学习综合指南监督学习的定义和简要说明监督学习在人工智能中的重要性和相关性概述什么是监督学习?基本概念主要组件:输入要素和目标标签训练监督式学习模型监督学习算法的类型分类回归每个类别中的流行算法示例监督学习的数据预处理数据清洗数据转换数据缩减特征工程概念简介及其对模型性能的影响模型评估和验证评估和验证监督学习模型的重要性常见评估指标概述模型评估技术挑战和未来方向监督
- Titanic - 1
silent_eyes_77
本周原想探究一下seaborn绘图方面的运用,发现用在实际案例中更有效果,遂直接用Kaggel经典的Titanic案例的描述性分析部分进行研究。以下是案例的其中一部分,模型探究有待补充与更新。复习一下,完成这篇分析报告需要进行的几个步骤:一、导入数据包与数据集二、数据分析1、总体预览2、描述性统计分析:使用统计学与绘图,初步了解数据之间相关性,为构造特征工程和模型建立做准备3、数据清洗4、建模与优
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc