- swift 对象转Json
泓博
swift
在Swift中将对象转换为JSON可以通过以下方法实现:使用Codable协议Swift的Codable协议(Encodable和Decodable的组合)是处理JSON编码和解码的推荐方式。structPerson:Codable{varname:Stringvarage:Int}letperson=Person(name:"John",age:30)letencoder=JSONEncoder
- 基于Transformer实现机器翻译
yyyyurina.
transformer机器翻译深度学习
目录一、前言1.1什么是Transformer?1.2Transfomer的基本结构1.2Transformer的重要组成部分1.2.1位置编码(PositionalEncode)1.2.2自注意力机制(Self-Attention)1.2.3多头注意力(Multi-HeadAttention)1.2.4位置感知前馈层(Position-wiseFFN)1.2.5残差连接与层归一化二、AutoDL
- python编码处理:unicode字节串转成中文 各种字符串举例说明
sdlcwangsong
python编码处理:unicode字节串转成中文各种字符串举例说明编码问题一直是很头痛的问题:当字符串是:'\u4e2d\u56fd'>>>s=['\u4e2d\u56fd','\u6e05\u534e\u5927\u5b66']>>>str=s[0].decode('unicode_escape')#.encode("EUC_KR")>>>printstr中国当字符串是:'东
- Logstash-Logback-Encoder 教程
孟元毓Pandora
Logstash-Logback-Encoder教程logstash-logback-encoderLogbackJSONencoderandappenders项目地址:https://gitcode.com/gh_mirrors/lo/logstash-logback-encoder本教程将引导您了解logstash-logback-encoder项目,这是一个用于生成JSON格式日志的Logb
- LSTM、GRU 与 Transformer网络模型参数计算
suixinm
lstmgrutransformer
参数计算公式对比模型类型参数计算公式关键组成部分LSTM4×(embed_dim×hidden_size+hidden_size²+hidden_size)4个门控结构GRU3×(embed_dim×hidden_size+hidden_size²+hidden_size)3个门控结构Transformer(Encoder)12×embed_dim²+9×embed_dim×ff_dim+14×e
- 预训练语言模型
lynnzon
语言模型人工智能自然语言处理
1.1Encoder-onlyPLMEncoder-only架构是Transformer的重要分支,专注于自然语言理解(NLU)任务,核心代表是BERT及其优化模型(RoBERTa、ALBERT)。其特点是:仅使用Encoder层:堆叠多层TransformerEncoder,捕捉文本双向语义。预训练任务:通过掩码语言模型(MLM)学习上下文依赖。应用场景:文本分类、实体识别、语义匹配等NLU任务
- 大模型学习 (Datawhale_Happy-LLM)笔记4: 预训练语言模型
lxltom
学习笔记语言模型人工智能bertgpt
大模型学习(Datawhale_Happy-LLM)笔记4:预训练语言模型一、概述本章按Encoder-Only、Encoder-Decoder、Decoder-Only的顺序来依次介绍Transformer时代的各个主流预训练模型,分别介绍三种核⼼的模型架构、每种主流模型选择的预训练任务及其独特优势,这也是目前所有主流LLM的模型基础。二、Encoder-onlyPLM代表:BERT及其优化版本
- 预训练语言模型之:Encoder-only PLM
抱抱宝
大模型语言模型人工智能自然语言处理
1.基础架构:TransformerEncoder所有模型的基石都是TransformerEncoder结构,其核心是自注意力机制:Attention(Q,K,V)=softmax(QKTdk)V\text{Attention}(Q,K,V)=\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)VAttention(Q,K,V)=softmax(dk
- windows使用mingw+cmake编译二维码生成库libqrencode
百口可乐__
WindowsGNU/Linux付费windowslinuxmicrosoft
libqrencode介绍LibqrencodeisafastandcompactlibraryforencodingdatainaQRCodesymbol,a2DsymbologythatcanbescannedbyhandyterminalssuchasamobilephonewithCCD.ThecapacityofQRCodeisupto7000digitsor4000characters
- QT生成二维码与linux下qrencode库编译
申卿凌
QT生成二维码与linux下qrencode库编译【下载地址】QT生成二维码与linux下qrencode库编译该项目为开发者提供了在Linux环境下使用QT框架生成二维码的完整解决方案。包含预编译的libqrencode库文件和示例源码,帮助开发者快速集成二维码生成功能。通过简单的配置,您可以在QT项目中轻松调用libqrencode库,实现高效的二维码编码与生成。无论是初学者还是经验丰富的开发
- 编码器技术解析:从基础原理到应用场景
亿只小灿灿
计算机基础日常小分享编码器
一、编码器的核心概念1.1定义与基本功能编码器(Encoder)是一种将信息从一种形式转换为另一种形式的设备或程序。其核心功能是通过特定的算法或机制,将输入信号(如模拟信号、数字数据、物理运动等)转换为便于存储、传输或处理的输出格式。在数字系统中,编码器的作用类似于"翻译官",例如:将文本字符转换为二进制代码(如ASCII编码)将视频图像压缩为特定格式(如H.264)将机械运动转换为电信号(如旋转
- 内存的代价:如何正确与 WASM 模块传值交互
EndingCoder
WebAssembly实战与前沿应用wasm交互性能优化主线程性能javascript
关键要点线性内存模型:WebAssembly(WASM)使用单一的线性内存块,供WASM和JavaScript(JS)共享数据。高效数据交换:通过指针和ArrayBuffer,WASM和JS可以高效传递数组、对象等复杂结构。字符串处理:使用TextEncoder和TextDecoder解决字符串编码问题,确保跨语言兼容性。内存管理:Rust的Drop机制与JS的垃圾回收(GC)需协调配合,防止内存
- Transformer 中 QKV 流向全解析(含注意力机制箭头图示)
Accelemate
transformer人工智能深度学习
QKV是什么?在Attention机制中,我们通过Query(查询)与一组Key-Value(键-值)对计算注意力权重,然后用这些权重对Value进行加权求和,从而输出当前时刻关注上下文的结果。Transformer中注意力模块分布Transformer结构中含有三种注意力机制,每个机制都会涉及Q、K、V的构建和使用:编码器自注意力(EncoderSelf-Attention)解码器自注意力(De
- 每次重启pycharm 都需要重新登录fitten code chat,比较困惑,还未找到原因!
一、简介FittenCode:是一款免费的基于AI的编程助手插件,其中还接入了Deepseek模型,支持多种开发环境(如VSCode、PyCharm等)和80多种主流编程语言,其主要作用是通过智能化手段提升开发效率。二、FittenCode插件安装1.打开Pycharm,在【file】-【settings】-【plugins】-搜索插件【fittencode】-【install】进行安装。2.安装
- swift结构体转字典方式
泓博
swift
在Swift中,将结构体转换为字典可以通过几种方法实现。以下是常见的实现方式:使用Codable协议结构体遵循Codable协议,利用JSONEncoder和JSONDecoder进行转换:structPerson:Codable{varname:Stringvarage:Int}letperson=Person(name:"Alice",age:30)letencoder=JSONEncoder
- windows编译exe时问题解决
老爸我爱你
java前端算法
1>------Buildstarted:Project:xxx,Configuration:Debugx64------1>Linking...1>libencoder.lib(mem.obj):errorLNK2005:CRYPTO_set_mem_functionsalreadydefinedinlibeay32.lib(mem.obj)1>libencoder.lib(mem.obj):e
- 机器学习数据预处理:标签编码LabelEncoder
数字化与智能化
人工智能机器学习机器学习标签编码LabelEncoder
一、什么是标签编码LabelEncoderLabelEncoder是scikit-learn库中的一个预处理工具,用于将分类变量转换为整数标签。它主要用于处理目标变量(也称为标签)或特征变量中的分类数据。假设我们有一组学生的成绩数据,其中一个特征是学生的等级(A、B、C、D、E)。我们可以使用LabelEncoder将这些等级转换为整数标签。LabelEncoder主要用于将分类变量转换为整数标签
- 【python实用小脚本-109】人脸识别系统实战:从基础实现到性能优化
Kyln.Wu
Pythonpython开发语言opencv
一、代码功能解析1.核心功能概述本代码实现了一个基于face_recognition库的人脸识别系统,能够从已知人脸库中识别出输入图像中的人物身份,主要功能包括:已知人脸特征编码存储未知图像人脸检测与编码人脸特征匹配与身份识别结果可视化展示2.关键模块深度解析(1)已知人脸编码模块defget_encoded_faces():encoded={}fordirpath,dnames,fnamesin
- 微信小程序传参过来了,但是数据没有获取到
菌菇汤
微信小程序小程序uniapp
使用本方法前,已经采用encodeURIComponent把拼接的参数编码之后,拼接在链接上,在接受的页面的onLoad生命周期,接收到参数之后,采用decodeURIComponent进行解码的操作,如果这个也不行,不是说不行,而是第一次跳转没有解析出来数据,也就是页面没有数据。需要第二次跳转才有数据。那么就是在微信小程序中,URL参数传递有以下限制:长度限制:URL过长会被截断编码问题:特殊字
- Transformer结构介绍
大写-凌祁
transformer深度学习人工智能
[编码器Encoder]←→[解码器Decoder]编码器:输入:源语言序列输出:每个词的上下文表示(embedding)解码器:输入:目标语言序列+编码器输出输出:下一个词的概率分布(目标句子生成)inputs->inputsEmbedding+PositionalEncoding->N*encoderoutput->outputsEmbedding+PositionalEncoding->N*
- 【深度学习pytorch-88】BERT
超华东算法王
DL-pytorch深度学习pytorchbert
BERT(BidirectionalEncoderRepresentationsfromTransformers)简介BERT是一种基于Transformer架构的预训练语言表示模型,旨在通过大规模无监督学习来提升下游自然语言处理(NLP)任务的效果。BERT由GoogleAI的研究人员于2018年提出,它在多个NLP任务上设立了新的最先进的性能基准。BERT的核心思想BERT的核心思想是通过预训
- 69 BERT预训练_BERT代码_by《李沐:动手学深度学习v2》pytorch版
醒了就刷牙
李沐动手学深度学习深度学习bertpytorch
系列文章目录文章目录系列文章目录BidirectionalEncoderRepresentationsfromTransformers(BERT)输入表示预训练任务掩蔽语言模型(MaskedLanguageModeling)下一句预测(NextSentencePrediction)整合代码小结练习BidirectionalEncoderRepresentationsfromTransformers
- agentformer论文阅读
ZHANG8023ZHEN
论文阅读
参考了这篇博文:https://zhuanlan.zhihu.com/p/512764984主要有这几个部分a.map_encoderi.对地图进行CNNb.ContextEncoderi.timeencoder–将时间信息用transformer和positionemb进行融合,加入到特征中ii.agent-awareattention–self和selfattentionother和other
- 如何让AI永远保持思考
wq舞s
人工智能深度学习pytorch科技json
(本文章涉及transformerencoder-decoder架构,以及自注意力和交叉注意力,请确保了解这些知识后再读取本文章)项目:永恒思考的AI(007的win11管理员)主题:将思维链作为AI生命的本体,一直延伸下去,只要思维链被保存,就永远可以被重启。首先将思维链(自回归最大token长度)限制为1000(也许也可以是其他长度,按算力预算和需求确定),则只需要拥有1000个位置编码。每生
- 资深Java工程师的面试题目(八)AI大模型
刘一说
后端技术栈JavaAI自说java面试人工智能
以下是针对Java面试者的AI大模型相关题目,涵盖基础理论、实际应用、代码实现和部署优化等方向:一、基础理论类题目1.Transformer架构与应用场景题目:请说明Encoder-Only、Decoder-Only和Encoder-Decoder架构的区别,并举例说明它们在AI大模型中的典型应用场景。解析:Encoder-Only(如BERT):用于理解型任务(如文本分类、问答系统)。原理:通过
- python简单的预测模型_python简单预测模型
HOWARD ZHOU
python简单的预测模型
python简单预测模型步骤1:导入所需的库,读取测试和训练数据集。#导入pandas、numpy包,导入LabelEncoder、random、RandomForestClassifier、GradientBoostingClassifier函数importpandasaspdimportnumpyasnpfromsklearn.preprocessingimportLabelEncoderim
- JavaScript给url网址进行encode编码的方法
时无诳语Imp
javascript开发语言
当我们需要将参数或者参数中的某些特殊字符放在URL中时,为了保证URL的正确性和完整性,我们需要对URL进行编码。1.使用encodeURIComponent()进行编码JavaScript中的encodeURIComponent()方法可以将字符串编码成URL合法的格式,将字符串中的某些特殊字符转化为其对应的编码字符。方法的语法如下:encodeURIComponent(str)其中,str是需
- pkl转分类,转关键点
AI算法网奇
python宝典分类人工智能计算机视觉
pkl_to_cls.pyimportglobimportjsonimportosimportpickleimporttimeimportcv2importnumpyasnpimportimageiofromPILimportImageimportnumpyasnpimportioclassMyEncoder(json.JSONEncoder):defdefault(self,obj):ifisi
- Transformer 核心概念转化为夏日生活类比
扉间798
人工智能transformer
以下是把Transformer核心概念转化为「夏日生活类比」,不用看代码也能秒懂,搭配冰镇西瓜式记忆法:一、Transformer=夏日冷饮制作流水线编码器(Encoder):相当于「食材处理间」把输入(比如“草莓、牛奶、冰块”)洗干净、切小块(转成向量),算出每种食材的重要性(自注意力)。解码器(Decoder):相当于「冷饮调配台」按顺序制作冷饮(生成输出),每次只能用已准备好的食材(掩码自注
- 【AI大模型】15、从GPT-1到GPT-3:大语言模型核心技术演进与能力涌现全解析
一、GPT-1:预训练微调范式的奠基者(2018)(一)架构创新:单向Transformer解码器的诞生GPT-1首次将Transformer架构应用于语言模型领域,其核心采用12层Transformer解码器,摒弃了传统RNN的递归结构,通过自注意力机制实现并行计算。与Encoder-Decoder架构不同,GPT-1仅使用解码器部分,每个解码器层包含:多头自注意力模块:8个头,每个头维度64,
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多