通过多层神经网络来预测图片二分类,训练数据为h5文件,测试数据为jpg
参考:
https://www.cnblogs.com/xushu/p/8686538.html
理解内容转至:
https://blog.csdn.net/Koala_Tree/article/details/78092337
https://blog.csdn.net/Hansry/article/details/78406225?fps=1&locationNum=5
https://blog.csdn.net/qq_25436597/article/details/78858588
multilayer.py
输入:
'''
Created on 2018年7月19日
@author: hcl
'''
import numpy as np
import h5py
import matplotlib.pyplot as plt
import time
import scipy
from PIL import Image
from scipy import ndimage
np.random.seed(1)
#sigmoid
def sigmoid(Z):
A = 1/(1+np.exp(-Z))
cache = Z
return A, cache
#relu
def relu(Z):
A = np.maximum(0,Z)
cache = Z
return A, cache
#sigmoid求导
def sigmoid_backward(dA, cache):
Z = cache
s = 1/(1+np.exp(-Z))
dZ = dA * s * (1-s)
return dZ
#relu求导
def relu_backward(dA, cache):
Z = cache
dZ = np.array(dA, copy=True)
dZ[Z <= 0] = 0
return dZ
#初始化参数
def initialize_parameters_deep(layer_dims):
np.random.seed(1)
parameters = {}
L = len(layer_dims)
for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1]) #初始化为随机值
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) #初始化为0
return parameters
#前向传播中的线性函数
def linear_forward(A, W, b):
Z = np.dot(W, A) + b
cache = (A, W, b)
return Z, cache
#不同激活函数下前向传播
def linear_activation_forward(A_prev, W, b, activation):
if activation == "sigmoid":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = sigmoid(Z)
elif activation == "relu":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = relu(Z)
cache = (linear_cache, activation_cache)
return A, cache
#L层神经网络模型的前向传播
def L_model_forward(X, parameters):
caches = []
A = X
L = len(parameters) // 2
for l in range(1, L):
A_prev = A
A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], activation = "relu")
caches.append(cache)
AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], activation = "sigmoid")
caches.append(cache)
assert(AL.shape == (1,X.shape[1]))
return AL, caches
#计算成本函数
def compute_cost(AL, Y):
m = Y.shape[1]
cost = (1./m) * (-np.dot(Y,np.log(AL).T) - np.dot(1-Y, np.log(1-AL).T))
cost = np.squeeze(cost)
return cost
#反向传播中的线性函数求导
def linear_backward(dZ, cache):
A_prev, W, b = cache
m = A_prev.shape[1]
dW = np.dot(dZ, A_prev.T)/m
db = np.sum(dZ, axis=1, keepdims=True)/m
dA_prev = np.dot(W.T, dZ)
return dA_prev, dW, db
#不同激活函数下反向传播求导
def linear_activation_backward(dA, cache, activation):
linear_cache, activation_cache = cache
if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ,linear_cache)
elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev, dW, db
#L层神经网络模型的反向传播
def L_model_backward(AL, Y, caches):
grads = {}
L = len(caches)
m = AL.shape[1]
Y = Y.reshape(AL.shape)
dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
current_cache = caches[L-1]
grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid")
for l in reversed(range(L-1)):
current_cache = caches[l]
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, activation = "relu")
grads["dA" + str(l + 1)] = dA_prev_temp
grads["dW" + str(l + 1)] = dW_temp
grads["db" + str(l + 1)] = db_temp
return grads
#更新参数
def update_parameters(parameters, grads, learning_rate):
L = len(parameters) // 2
for l in range(L):
parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate*grads["dW" + str(l+1)]
parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate*grads["db" + str(l+1)]
return parameters
#计算识别准确度
def predict(X, y, parameters):
m = X.shape[1]
n = len(parameters) // 2
p = np.zeros((1,m))
probas, caches = L_model_forward(X, parameters)
for i in range(0, probas.shape[1]):
if probas[0,i] > 0.5:
p[0,i] = 1
else:
p[0,i] = 0
print("预测准确度: " + str(np.sum((p == y)/m)))
return p
#L层神经网络模型
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
np.random.seed(1)
costs = []
parameters = initialize_parameters_deep(layers_dims)
for i in range(0, num_iterations):
AL, caches = L_model_forward(X, parameters)
cost = compute_cost(AL, Y)
grads = L_model_backward(AL, Y, caches)
parameters = update_parameters(parameters, grads, learning_rate)
if print_cost and i % 100 == 0:
print ("loop %i cost value: %f" %(i, cost))
if print_cost and i % 100 == 0:
costs.append(cost)
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
#导入数据
def load_dataset():
train_dataset = h5py.File("train_catvnoncat.h5","r") #读取训练数据,共209张图片
test_dataset = h5py.File("test_catvnoncat.h5", "r") #读取测试数据,共50张图片
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) #原始训练集(209*64*64*3)
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) #原始训练集的标签集(y=0非猫,y=1是猫)(209*1)
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) #原始测试集(50*64*64*3
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) #原始测试集的标签集(y=0非猫,y=1是猫)(50*1)
train_set_y_orig = train_set_y_orig.reshape((1,train_set_y_orig.shape[0])) #原始训练集的标签集设为(1*209)
test_set_y_orig = test_set_y_orig.reshape((1,test_set_y_orig.shape[0])) #原始测试集的标签集设为(1*50)
classes = np.array(test_dataset["list_classes"][:])
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
train_x_orig, train_y, test_x_orig, test_y, classes = load_dataset()
m_train = train_x_orig.shape[0] #训练集中样本个数
m_test = test_x_orig.shape[0] #测试集总样本个数
num_px = test_x_orig.shape[1] #图片的像素大小
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0],-1).T #原始训练集的设为(12288*209)
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0],-1).T #原始测试集设为(12288*50)
train_x = train_x_flatten/255. #将训练集矩阵标准化
test_x = test_x_flatten/255. #将测试集矩阵标准化
layers_dims = [12288, 20, 7, 5, 1]
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)
pred_train = predict(train_x, train_y, parameters)
pred_test = predict(test_x, test_y, parameters)
my_image = "1.jpg" #改成自己的图片文件名
my_label_y = [1] #改成自己的图片的标签
image = np.array(ndimage.imread(my_image, flatten=False))
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1))
my_predicted_image = predict(my_image, my_label_y, parameters)
plt.imshow(image)
print ("y = " + str(np.squeeze(my_predicted_image)) + ", 你的L层神经网络模型检测到它是一张 \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" 的图片.")
plt.show()
输出:
循环0次后的成本值: 0.771749
循环100次后的成本值: 0.672053
循环200次后的成本值: 0.648263
循环300次后的成本值: 0.611507
循环400次后的成本值: 0.567047
循环500次后的成本值: 0.540138
循环600次后的成本值: 0.527930
循环700次后的成本值: 0.465477
循环800次后的成本值: 0.369126
循环900次后的成本值: 0.391747
循环1000次后的成本值: 0.315187
循环1100次后的成本值: 0.272700
循环1200次后的成本值: 0.237419
循环1300次后的成本值: 0.199601
循环1400次后的成本值: 0.189263
循环1500次后的成本值: 0.161189
循环1600次后的成本值: 0.148214
循环1700次后的成本值: 0.137775
循环1800次后的成本值: 0.129740
循环1900次后的成本值: 0.121225
循环2000次后的成本值: 0.113821
循环2100次后的成本值: 0.107839
循环2200次后的成本值: 0.102855
循环2300次后的成本值: 0.100897
循环2400次后的成本值: 0.092878
预测准确度: 0.985645933014
预测准确度: 0.8
预测准确度: 0.0
y = 1.0, 你的L层神经网络模型检测到它是一张 "cat" 的图片.