一、前言
本文使用opencv的calcOpticalFlowFarneback光流法计算图像的运动光流,并显示计算得的光流强度,视频大小为640*480,但速度很慢,计算速度为300ms左右一帧。不知使用GPU版的光流法能快多少。
二、简单的代码
#include
#include
#include
#include
using namespace cv;
#include
#include
#include
#include
static VideoCapture cap;
static unsigned int frame_count = 0;
void compute_absolute_mat(const Mat& in , Mat & out );
int main()
{
cap.open("35450-47160.avi");
if (!cap.isOpened()){
std::cout << "视频读取失败!" << std::endl;
return -1;
}
Mat img ,gray,prvGray, optFlow ,absoluteFlow, img_for_show;
while (1){
cap >> img;
if (img.empty()) break;
cvtColor(img , gray ,CV_BGR2GRAY);
if (prvGray.data){
calcOpticalFlowFarneback(prvGray, gray, optFlow, 0.5, 3, 15, 3, 5, 1.2, 0); //使用论文参数
normalize(absoluteFlow, img_for_show, 0, 255, NORM_MINMAX, CV_8UC1);
imshow("opticalFlow", img_for_show);
imshow("resource", img);
}
cv::swap(prvGray, gray);
waitKey(1);
}
return 0;
}
void compute_absolute_mat(const Mat& in, Mat & out)
{
if (out.empty()){
out.create(in.size(), CV_32FC1);
}
const Mat_ _in = in;
//遍历吧,少年
for (int i = 0; i < in.rows; ++i){
float *data = out.ptr(i);
for (int j = 0; j < in.cols; ++j){
double s = _in(i, j)[0] * _in(i, j)[0] + _in(i, j)[1] * _in(i, j)[1];
if (s>1){
data[j] = std::sqrt(s);
}
else{
data[j] = 0.0;
}
}
}
}
三、结果
四、gpu版光流法
使用opencv中基于GPU实现的光流法gpu::FarnebackOpticalFlow,速度上为50ms左右一帧,提升好几倍
五、代码
#include
#include
#include
#include
#include
using namespace cv;
#include
#include
void compute_absolute_mat(Mat &in_x, Mat &in_y, Mat& _out);
int main()
{
const std::string fname("1.avi");
VideoCapture cap(fname);
if (!cap.isOpened()){
std::cerr << "无法打开视频";
return -1;
}
Mat img;
Mat prev, curr, flowx, flowy, fb,fb_show;;
gpu::GpuMat curr_gpu, prev_gpu, flowx_gpu, flowy_gpu , fb_gpu;
gpu::FarnebackOpticalFlow fbOptFlow;
while (cap.read(img)){
cvtColor(img, curr , CV_BGR2GRAY);
if (!prev.empty()){
curr_gpu.upload(curr);
prev_gpu.upload(prev);
fbOptFlow(curr_gpu, prev_gpu, flowx_gpu, flowy_gpu);
flowx_gpu.download(flowx);
flowy_gpu.download(flowy);
compute_absolute_mat(flowx, flowy, fb);
normalize(fb, fb_show, 0, 255, NORM_MINMAX, CV_8UC1);
curr_gpu.release();
prev_gpu.release();
flowx_gpu.release();
flowy_gpu.release();
fb_gpu.release();
imshow("gpu_opticalFlow", fb_show);
imshow("resource", img);
waitKey(1);
}
cv::swap(prev, curr);
}
return 0;
}
void compute_absolute_mat(Mat &in_x, Mat &in_y , Mat& _out)
{
if (_out.empty()) _out.create(in_x.size(), CV_32FC1);
for (int i = 0; i < _out.rows; ++i){
float * ptr_x = in_x.ptr(i);
float * ptr_y = in_x.ptr(i);
float *data = _out.ptr(i);
for (int j = 0; j < _out.cols; ++j){
double s = ptr_x[j] * ptr_x[j] + ptr_y[j] * ptr_y[j];
if (s>1){
data[j] = std::sqrt(s);
}
else{
data[j] = 0.0;
}
}
}
}
六、结果