TensorFlow-深度学习-07-基于逻辑回归预测二元分类

现在我这里有一份数据集,数据量很少,只有不到200行,里面有0和1的标签,很适合做二分类,数据集如下:

LOW,AGE,LWT,RACE,SMOKE,PTL,HT,UI,BWT
1,28,113,1,1,1,0,1,709
1,29,130,0,0,0,0,1,1021
1,34,187,1,1,0,1,0,1135
1,25,105,1,0,1,1,0,1330
1,25,85,1,0,0,0,1,1474
1,27,150,1,0,0,0,0,1588
1,23,97,1,0,0,0,1,1588
1,24,128,1,0,1,0,0,1701
1,24,132,1,0,0,1,0,1729
1,21,165,0,1,0,1,0,1790
1,32,105,1,1,0,0,0,1818
1,19,91,0,1,1,0,1,1885
1,25,115,1,0,0,0,0,1893
1,16,130,1,0,0,0,0,1899
1,25,92,0,1,0,0,0,1928
1,20,150,0,1,0,0,0,1928
1,21,190,1,0,0,0,1,1928
1,24,155,0,1,1,0,0,1936
1,21,103,1,0,0,0,0,1970
1,20,125,1,0,0,0,1,2055
1,25,89,1,0,1,0,0,2055
1,19,102,0,0,0,0,0,2082
1,19,112,0,1,0,0,1,2084
1,26,117,0,1,1,0,1,2084
1,24,138,0,0,0,0,0,2100
1,17,130,1,1,1,0,1,2125
1,20,120,1,1,0,0,0,2126
1,22,130,0,1,1,0,1,2187
1,27,130,1,0,0,0,1,2187
1,20,80,1,1,0,0,1,2211
1,17,110,0,1,0,0,0,2225
1,25,105,1,0,1,0,0,2240
1,20,109,1,0,0,0,0,2240
1,18,148,1,0,0,0,0,2282
1,18,110,1,1,1,0,0,2296
1,20,121,0,1,1,0,1,2296
1,21,100,1,0,1,0,0,2301
1,26,96,1,0,0,0,0,2325
1,31,102,0,1,1,0,0,2353
1,15,110,0,0,0,0,0,2353
1,23,187,1,1,0,0,0,2367
1,20,122,1,1,1,0,0,2381
1,24,105,1,1,0,0,0,2381
1,15,115,1,0,0,0,1,2381
1,23,120,1,0,0,0,0,2395
1,30,142,0,1,1,0,0,2410
1,22,130,0,1,0,0,0,2410
1,17,120,0,1,0,0,0,2414
1,23,110,0,1,1,0,0,2424
1,17,120,1,0,0,0,0,2438
1,26,154,1,0,1,1,0,2442
1,20,105,1,0,0,0,0,2450
1,26,168,0,1,0,0,0,2466
1,14,101,1,1,1,0,0,2466
1,28,95,0,1,0,0,0,2466
1,14,100,1,0,0,0,0,2495
1,23,94,1,1,0,0,0,2495
1,17,142,1,0,0,1,0,2495
1,21,130,0,1,0,1,0,2495
0,19,182,1,0,0,0,1,2523
0,33,155,1,0,0,0,0,2551
0,20,105,0,1,0,0,0,2557
0,21,108,0,1,0,0,1,2594
0,18,107,0,1,0,0,1,2600
0,21,124,1,0,0,0,0,2622
0,22,118,0,0,0,0,0,2637
0,17,103,1,0,0,0,0,2637
0,29,123,0,1,0,0,0,2663
0,26,113,0,1,0,0,0,2665
0,19,95,1,0,0,0,0,2722
0,19,150,1,0,0,0,0,2733
0,22,95,1,0,0,1,0,2750
0,30,107,1,0,1,0,1,2750
0,18,100,0,1,0,0,0,2769
0,18,100,1,1,0,0,0,2769
0,15,98,1,0,0,0,0,2778
0,25,118,0,1,0,0,0,2782
0,20,120,1,0,0,0,1,2807
0,28,120,0,1,0,0,0,2821
0,32,121,1,0,0,0,0,2835
0,31,100,0,0,0,0,1,2835
0,36,202,0,0,0,0,0,2836
0,28,120,1,0,0,0,0,2863
0,25,120,1,0,0,0,1,2877
0,28,167,0,0,0,0,0,2877
0,17,122,0,1,0,0,0,2906
0,29,150,0,0,0,0,0,2920
0,26,168,1,1,0,0,0,2920
0,17,113,1,0,0,0,0,2920
0,17,113,1,0,0,0,0,2920
0,24,90,0,1,1,0,0,2948
0,35,121,1,1,1,1,0,2948
0,25,155,0,1,1,0,0,2977
0,25,125,1,0,0,0,0,2977
0,29,140,0,1,0,0,0,2977
0,19,138,0,1,0,1,0,2977
0,27,124,0,1,0,0,0,2992
0,31,115,0,1,0,0,0,3005
0,33,109,0,1,0,0,0,3033
0,21,185,1,1,0,0,0,3042
0,19,189,0,0,0,0,0,3062
0,23,130,1,0,0,0,0,3062
0,21,160,0,0,0,0,0,3062
0,18,90,0,1,0,0,1,3076
0,18,90,0,1,0,0,1,3076
0,32,132,0,0,0,0,0,3080
0,19,132,1,0,0,0,0,3090
0,24,115,0,0,0,0,0,3090
0,22,85,1,1,0,0,0,3090
0,22,120,0,0,0,1,0,3100
0,23,128,1,0,0,0,0,3104
0,22,130,0,1,0,0,0,3132
0,30,95,0,1,0,0,0,3147
0,19,115,1,0,0,0,0,3175
0,16,110,1,0,0,0,0,3175
0,21,110,1,1,0,0,1,3203
0,30,153,1,0,0,0,0,3203
0,20,103,1,0,0,0,0,3203
0,17,119,1,0,0,0,0,3225
0,17,119,1,0,0,0,0,3225
0,23,119,1,0,0,0,0,3232
0,24,110,1,0,0,0,0,3232
0,28,140,0,0,0,0,0,3234
0,26,133,1,1,0,0,0,3260
0,20,169,1,0,1,0,1,3274
0,24,115,1,0,0,0,0,3274
0,28,250,1,1,0,0,0,3303
0,20,141,0,0,0,0,1,3317
0,22,158,1,0,1,0,0,3317
0,22,112,0,1,1,0,0,3317
0,31,150,1,1,0,0,0,3321
0,23,115,1,1,0,0,0,3331
0,16,112,1,0,0,0,0,3374
0,16,135,0,1,0,0,0,3374
0,18,229,1,0,0,0,0,3402
0,25,140,0,0,0,0,0,3416
0,32,134,0,1,1,0,0,3430
0,20,121,1,1,0,0,0,3444
0,23,190,0,0,0,0,0,3459
0,22,131,0,0,0,0,0,3460
0,32,170,0,0,0,0,0,3473
0,30,110,1,0,0,0,0,3475
0,20,127,1,0,0,0,0,3487
0,23,123,1,0,0,0,0,3544
0,17,120,1,1,0,0,0,3572
0,19,105,1,0,0,0,0,3572
0,23,130,0,0,0,0,0,3586
0,36,175,0,0,0,0,0,3600
0,22,125,0,0,0,0,0,3614
0,24,133,0,0,0,0,0,3614
0,21,134,1,0,0,0,0,3629
0,19,235,0,1,0,1,0,3629
0,25,200,0,0,1,0,1,3637
0,16,135,0,1,0,0,0,3643
0,29,135,0,0,0,0,0,3651
0,29,154,0,0,0,0,0,3651
0,19,147,0,1,0,0,0,3651
0,19,147,0,1,0,0,0,3651
0,30,137,0,0,0,0,0,3699
0,24,110,0,0,0,0,0,3728
0,19,184,0,1,0,1,0,3756
0,24,110,0,0,1,0,0,3770
0,23,110,0,0,0,0,0,3770
0,20,120,1,0,0,0,0,3770
0,25,141,0,0,0,1,0,3790
0,30,112,0,0,0,0,0,3799
0,22,169,0,0,0,0,0,3827
0,18,120,0,1,0,0,0,3856
0,16,170,1,0,0,0,0,3860
0,32,186,0,0,0,0,0,3860
0,18,120,1,0,0,0,0,3884
0,29,130,0,1,0,0,0,3884
0,33,117,0,0,0,0,1,3912
0,20,170,0,1,0,0,0,3940
0,28,134,1,0,0,0,0,3941
0,14,135,0,0,1,0,0,3941
0,28,130,1,0,0,0,0,3969
0,25,120,0,0,0,0,0,3983
0,16,135,1,0,0,0,0,3997
0,20,158,0,0,0,0,0,3997
0,26,160,0,0,0,0,0,4054
0,21,115,0,0,0,0,0,4054
0,22,129,0,0,0,0,0,4111
0,25,130,0,0,0,0,0,4153
0,31,120,0,0,0,0,0,4167
0,35,170,0,0,1,0,0,4174
0,19,120,0,1,0,1,0,4238
0,24,216,0,0,0,0,0,4593
0,45,123,0,0,1,0,0,4990

可以把它复制下来存成excel或txt或csv,利用pandas读取。这是一份公开数据集,一个人的恶习指标对下一代出生婴儿的影响,无影响表示0,有影响表示1,即标签列,为数据集中的“LOW”列。
下面将使用简单的逻辑回归进行数据训练与预测:
1、读取数据集及各列:

data = pd.read_csv("Logistic_data.csv")  
y_labels = np.array(data.iloc[:, data.columns == "LOW"])
x_data = np.array(data.iloc[:, data.columns != "LOW"].astype(float))  # 去除LOW列

2、划分训练集与测试集(比例大概为8:2)

np.random.seed(99)  # 每次生成的随机数都相同
tf.set_random_seed(99)
train_indeces = np.random.choice(len(x_data), round(len(x_data) * 0.8), replace=False)  # replace=False不能有重复
test_indeces = np.array(list(set(range(len(x_data))) - set(train_indeces)))  # 剩余的数据

# 训练集
x_train = x_data[train_indeces]
x_test = x_data[test_indeces]

y_train = y_labels[train_indeces]
y_test = y_labels[test_indeces]

3、数据归一化(防止某列部分数据过小而被某列大数据吃掉)

def normalization(data):
    cmax = data.max(axis=0)
    cmin = data.min(axis=0)
    return (data - cmin) / (cmax - cmin)


x_train = np.nan_to_num(normalization(x_train))
x_test = np.nan_to_num(normalization(x_test))

4、梯度下降设置

x_input = tf.placeholder(shape=[None, 8], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

W = tf.Variable(tf.random_normal([8, 1]))
b = tf.Variable(tf.random_normal([1, 1]))

model = tf.add(tf.matmul(x_input, W), b)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y_target, logits=model))  #交叉熵损失函数,不需要使用sigmod()

optimizer = tf.train.GradientDescentOptimizer(0.05) #梯度下降优化器
step = optimizer.minimize(loss)

5、喂数据并训练

batch_size=50
    # train stage
    for i in range(8000):
        rand_index=np.random.choice(len(x_train),size=batch_size,replace=False)
        rand_x=x_train[rand_index]
        rand_y=y_train[rand_index]
        sess.run(step,feed_dict={x_input:rand_x,y_target:rand_y})
        temp_loss,curr_acc_train = sess.run([loss,accuary], feed_dict={x_input:rand_x,y_target:rand_y})
        curr_acc_test = sess.run(accuary,feed_dict={x_input: x_test, y_target: np.transpose(y_test).reshape(len(x_test), 1)})
        acc_test.append(curr_acc_test)
        acc_train.append(curr_acc_train)
        loss_value.append(temp_loss)
        if (i+1)%800==0:
            print("训练集准确率:",(curr_acc_train*100),"%","测试集准确率:",(curr_acc_test*100),"%","损失值:",temp_loss)

6、绘制loss损失值图像与准确率图像(可以忽略)

'''-----loss值绘图-------'''
    plt.plot(loss_value,'k--')
    plt.title("loss function")
    plt.xlabel("Generation")
    plt.ylabel("Cross entry")
    plt.show()

    '''----准确率绘图-------'''
    plt.plot(acc_train, 'b--',label="train accuary")
    plt.plot(acc_test, 'g--',label="test accuary")
    plt.title("accuary")
    plt.xlabel("Generation")
    plt.ylabel("Accuracy")
    plt.legend()
    plt.show()

完整代码:

import tensorflow as tf
import pandas as pd
import numpy as np
import warnings
import matplotlib.pyplot as plt

warnings.filterwarnings("ignore")

data = pd.read_csv("Logistic_data.csv")

# print(data.head()
'''-------------取出标签列和参数行--------------'''
y_labels = np.array(data.iloc[:, data.columns == "LOW"])
x_data = np.array(data.iloc[:, data.columns != "LOW"].astype(float))  # 去除LOW列


'''-------------训练集和测试集划分---------------'''
np.random.seed(99)  # 每次生成的随机数都相同
tf.set_random_seed(99)
train_indeces = np.random.choice(len(x_data), round(len(x_data) * 0.8), replace=False)  # replace=False不能有重复
test_indeces = np.array(list(set(range(len(x_data))) - set(train_indeces)))  # 剩余的数据

# 训练集
x_train = x_data[train_indeces]
x_test = x_data[test_indeces]

y_train = y_labels[train_indeces]
y_test = y_labels[test_indeces]


def normalization(data):
    cmax = data.max(axis=0)
    cmin = data.min(axis=0)
    return (data - cmin) / (cmax - cmin)


x_train = np.nan_to_num(normalization(x_train))
x_test = np.nan_to_num(normalization(x_test))

x_input = tf.placeholder(shape=[None, 8], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

W = tf.Variable(tf.random_normal([8, 1]))
b = tf.Variable(tf.random_normal([1, 1]))

model = tf.add(tf.matmul(x_input, W), b)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y_target, logits=model))  #交叉熵损失函数,不需要使用sigmod()

optimizer = tf.train.GradientDescentOptimizer(0.05) #梯度下降优化器
step = optimizer.minimize(loss)

init = tf.global_variables_initializer()
with tf.Session() as sess:
    acc_train=[]
    acc_test=[]
    loss_value=[]

    sess.run(init)
    predicts = tf.round(tf.sigmoid(model))
    correction = tf.cast(tf.equal(predicts, y_target), tf.float32)
    accuary = tf.reduce_mean(correction)
    batch_size=50
    # train stage
    for i in range(8000):
        rand_index=np.random.choice(len(x_train),size=batch_size,replace=False)
        rand_x=x_train[rand_index]
        rand_y=y_train[rand_index]
        sess.run(step,feed_dict={x_input:rand_x,y_target:rand_y})
        temp_loss,curr_acc_train = sess.run([loss,accuary], feed_dict={x_input:rand_x,y_target:rand_y})
        curr_acc_test = sess.run(accuary,feed_dict={x_input: x_test, y_target: np.transpose(y_test).reshape(len(x_test), 1)})
        acc_test.append(curr_acc_test)
        acc_train.append(curr_acc_train)
        loss_value.append(temp_loss)
        if (i+1)%800==0:
            print("训练集准确率:",(curr_acc_train*100),"%","测试集准确率:",(curr_acc_test*100),"%","损失值:",temp_loss)

    '''-----loss值绘图-------'''
    plt.plot(loss_value,'k--')
    plt.title("loss function")
    plt.xlabel("Generation")
    plt.ylabel("Cross entry")
    plt.show()

    '''----准确率绘图-------'''
    plt.plot(acc_train, 'b--',label="train accuary")
    plt.plot(acc_test, 'g--',label="test accuary")
    plt.title("accuary")
    plt.xlabel("Generation")
    plt.ylabel("Accuracy")
    plt.legend()
    plt.show()

结果:
TensorFlow-深度学习-07-基于逻辑回归预测二元分类_第1张图片
图像:
TensorFlow-深度学习-07-基于逻辑回归预测二元分类_第2张图片
TensorFlow-深度学习-07-基于逻辑回归预测二元分类_第3张图片

调整代码,我们不设值batch_size,如果把数据一次性喂给网络进行训练,loss值效果可能还会更好,但是速度可能慢点:

import tensorflow as tf
import pandas as pd
import numpy as np
import warnings
import matplotlib.pyplot as plt

warnings.filterwarnings("ignore")

data = pd.read_csv("Logistic_data.csv")

# print(data.head()
'''-------------取出标签列和参数行--------------'''
y_labels = np.array(data.iloc[:, data.columns == "LOW"])
x_data = np.array(data.iloc[:, data.columns != "LOW"].astype(float))  # 去除LOW列


'''-------------训练集和测试集划分---------------'''
np.random.seed(99)  # 每次生成的随机数都相同
tf.set_random_seed(99)
train_indeces = np.random.choice(len(x_data), round(len(x_data) * 0.8), replace=False)  # replace=False不能有重复
test_indeces = np.array(list(set(range(len(x_data))) - set(train_indeces)))  # 剩余的数据

# 训练集
x_train = x_data[train_indeces]
x_test = x_data[test_indeces]

y_train = y_labels[train_indeces]
y_test = y_labels[test_indeces]


def normalization(data):
    cmax = data.max(axis=0)
    cmin = data.min(axis=0)
    return (data - cmin) / (cmax - cmin)


x_train = np.nan_to_num(normalization(x_train))
x_test = np.nan_to_num(normalization(x_test))

x_input = tf.placeholder(shape=[None, 8], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

W = tf.Variable(tf.random_normal([8, 1]))
b = tf.Variable(tf.random_normal([1, 1]))

model = tf.add(tf.matmul(x_input, W), b)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y_target, logits=model))  #交叉熵损失函数,不需要使用sigmod()

optimizer = tf.train.GradientDescentOptimizer(0.05) #梯度下降优化器
step = optimizer.minimize(loss)

init = tf.global_variables_initializer()
with tf.Session() as sess:
    acc_train=[]
    acc_test=[]
    loss_value=[]

    sess.run(init)
    predicts = tf.round(tf.sigmoid(model))
    correction = tf.cast(tf.equal(predicts, y_target), tf.float32)
    accuary = tf.reduce_mean(correction)
    batch_size=50
    # train stage
    for i in range(8000):
        rand_index=np.random.choice(len(x_train),size=batch_size,replace=False)
        rand_x=x_train[rand_index]
        rand_y=y_train[rand_index]
        sess.run(step,feed_dict={x_input:x_train,y_target:y_train})
        temp_loss,curr_acc_train = sess.run([loss,accuary], feed_dict={x_input:x_train,y_target:y_train})
        curr_acc_test = sess.run(accuary,feed_dict={x_input: x_test, y_target: np.transpose(y_test).reshape(len(x_test), 1)})
        acc_test.append(curr_acc_test)
        acc_train.append(curr_acc_train)
        loss_value.append(temp_loss)
        if (i+1)%800==0:
            print("训练集准确率:",(curr_acc_train*100),"%","测试集准确率:",(curr_acc_test*100),"%","损失值:",temp_loss)

    '''-----loss值绘图-------'''
    plt.plot(loss_value,'k--')
    plt.title("loss function")
    plt.xlabel("Generation")
    plt.ylabel("Cross entry")
    plt.show()

    '''----准确率绘图-------'''
    plt.plot(acc_train, 'b--',label="train accuary")
    plt.plot(acc_test, 'g--',label="test accuary")
    plt.title("accuary")
    plt.xlabel("Generation")
    plt.ylabel("Accuracy")
    plt.legend()
    plt.show()

运行结果:
TensorFlow-深度学习-07-基于逻辑回归预测二元分类_第4张图片
图像:
TensorFlow-深度学习-07-基于逻辑回归预测二元分类_第5张图片
TensorFlow-深度学习-07-基于逻辑回归预测二元分类_第6张图片

你可能感兴趣的:(Tensorflow)