- Python在DevOps中的应用:自动化CI/CD管道的实现
蒙娜丽宁
Python杂谈pythonjavascript开发语言
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在现代软件开发中,DevOps理念的引入极大地提升了开发与运维的协作效率,而持续集成(CI)与持续部署(CD)则是其核心实践之一。Python作为一种简洁高效的编程语言,凭借其丰富的库和灵活性,成为实现自动化CI/CD管道的理想选择。本文深入探讨了如何利
- 数字人技术在短视频中的应用
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
数字人、短视频、人工智能、计算机视觉、自然语言处理、虚拟主播、内容创作1.背景介绍短视频作为一种新兴的传播媒介,其内容形式丰富、传播速度快、用户粘性强,已成为当今互联网领域最热门的应用之一。随着技术的不断发展,数字人技术逐渐成熟,并开始在短视频领域得到广泛应用。数字人是指利用计算机技术模拟真实人类形象和行为的虚拟角色,其具备逼真的外形、流畅的肢体动作和自然的语言表达能力。数字人技术在短视频领域的应
- 计算机视觉——SIFT特征提取与检索算法
-shiba-
计算机视觉算法sift算法
计算机视觉——SIFT特征提取与检索算法1.基本介绍1.1算法特点1.2检测步骤2.基本原理2.1关键点2.2尺度空间2.3高斯模糊2.3.1高斯函数2.3.2高斯模糊2.3.3高斯金字塔2.4DOG函数2.4.1DOG函数的2.5关键点描述及匹配3.实验以及总结3.1实验数据集3.2提取图片SIFT特征,并展示特征点3.2.1代码3.2.2结果展示(选取)3.3计算两张图片SIFT特征匹配结果3
- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- 基于深度学习YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython人工智能目标跟踪计算机视觉开发语言
一、前言随着人工智能技术的快速发展,计算机视觉(ComputerVision)已广泛应用于各种实际场景中,特别是在安全、金融、医疗等领域。人脸识别作为计算机视觉的一个重要应用,已经成为很多身份验证、安防监控、智能门禁等系统的核心技术。近年来,随着深度学习的突破,YOLO(YouOnlyLookOnce)系列算法因其高效、准确、实时的特点,广泛应用于物体检测任务。在实际的人脸识别应用中,活体人脸检测
- 【深度学习】计算机视觉(CV)-目标检测-SSD(Single Shot MultiBox Detector)—— 单次检测多框检测器
IT古董
深度学习人工智能计算机视觉深度学习目标检测
SSD(SingleShotMultiBoxDetector)——单次检测多框检测器1️⃣什么是SSD?SSD(SingleShotMultiBoxDetector)是一种用于目标检测(ObjectDetection)的深度学习模型,由WeiLiu等人在2016年提出。它采用单阶段(SingleStage)方法,能够直接从图像中检测多个对象,并输出类别和边界框,比传统的两阶段方法(如FasterR
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- Python知识点:基于Python技术,如何使用YOLO进行实时物体检测
超哥同学
Python系列pythonYOLO开发语言面试编程
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!使用YOLO进行实时物体检测的Python技术详解实时物体检测是计算机视觉中的一个关键任务,它要求算法能够快速且准确地识别和定位图像或视频流中的物体。YOLO(YouOnlyLookOnce)算法因其速度快、性能高而受到广泛关注。在本文中,我们将详细介绍如何使用Python和YOLO
- 基于深度学习YOLOv8的海洋动物检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython目标检测人工智能开发语言
引言近年来,计算机视觉技术在各行各业中得到了广泛的应用,特别是在智能监控、自动驾驶、医疗诊断等领域。深度学习,尤其是卷积神经网络(CNN)的出现,极大地提高了计算机处理图像和视频的能力。在这一领域,YOLO(YouOnlyLookOnce)系列模型以其高效且准确的目标检测能力,成为了当下最为流行的深度学习模型之一。在海洋生物保护、海洋环境监测等应用中,快速识别和检测海洋动物种类对于科学研究和保护工
- CVPR2024最佳论文出炉!历年CVPR最佳论文盘点(2000 年—2024 年)
沃恩智慧
深度学习人工智能CVPR人工智能论文阅读深度学习
cvpr2024最佳论文出炉,本次论文可谓是万里挑一。作为计算机视觉领域的顶级学术会议CVPR,每年评选出的一篇或多篇最佳论文,不仅为计算机视觉领域的顶级学术荣誉,更代表了将对未来技术或行业发展产生重要影响的里程碑式研究成果。为了帮助大家对这批计算机领域的重要论文进行复习,沃恩智慧为大家精心整理了一份从2000年—2024年的CVPR最佳论文盘点。需要的同学关注公众号【沃的顶会】,回复“CVPR”
- 详解AI作画算法原理
Jimaks
后端AIpythonai作画python人工智能
在艺术与科技的交汇处,AI作画正以惊人的创造力刷新着我们对美的认知。这一领域融合了深度学习、计算机视觉和生成模型的前沿技术,让机器能够“想象”并创作出令人惊叹的图像。本文将深入浅出地探讨AI作画的核心算法原理,分析常见问题与易错点,并通过一个简单的代码示例,带领大家一窥AI艺术创作的奥秘。一、核心概念与原理1.生成对抗网络(GANs)GANs是AI作画中最著名的算法之一,由IanGoodfello
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- cnn以及例子
阿拉斯攀登
机器学习cnn人工智能神经网络
cnnCNN即卷积神经网络(ConvolutionalNeuralNetwork),是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型,在计算机视觉、语音识别等诸多领域都有广泛应用。以下是CNN的详细介绍:基本原理卷积层:是CNN的核心组成部分,通过卷积核在数据上滑动进行卷积操作,自动提取数据中的局部特征。例如,在处理图像时,卷积核可以检测图像中的边缘、线条等简单特征。卷积操作大
- 计算机视觉四大任务模型汇总
Zero_one_ws
《神经网络与深度学习》理论计算机视觉人工智能深度学习图像分类图像目标检测目标分割关键点检测
计算机视觉中有四大核心任务:1-分类任务、2-目标检测任务、3-目标分割任务和4-关键点检测任务文章1:一文读懂计算机视觉4大任务文章2:图像的目标分割任务:语义分割和实例分割不同任务之间相关但不完全相同,因此不同的任务最好选择相应的模型,话不多说,看表:(注:表中github链接并不一定是模型的正式版本,只是本文用于展示模型的网络结构和应用)1-分类任务模型序号模型ipynb模型的github链
- 计算机视觉(Computer Vision,CV)四大基本任务--分类、检测、定位、分割
明月光舞
计算机视觉计算机视觉目标检测深度学习
文章目录前言一、计算机视觉任务一:目标分类常用数据集常见网络结构二、计算机视觉任务二:目标定位三、计算机视觉任务三:目标检测常用数据集常见网络结构四、计算机视觉任务四:目标分割常用数据集常见网络结构前言计算机视觉(ComputerVision,CV)是一门研究如何让机器具备“看”的能力的学科,以人或动物的视觉能力为参照,通过计算机对视觉数据(图像、视频等)的处理、学习、推理判断,复现出、模拟出甚至
- 计算机视觉核心任务
飞瀑
AIyolo
1.计算机视频重要分类计算机视觉的重要任务可以大致分为以下几类:1.图像分类(ImageClassification)识别图像属于哪个类别,例如猫、狗、汽车等。应用场景:物品识别、人脸识别、医疗影像分类。代表模型:ResNet、EfficientNet、ViT(VisionTransformer)。2.目标检测(ObjectDetection)识别图像中目标的位置(边界框)及类别。应用场景:自动驾
- COCO数据集
是小果果蛋儿啊
机器学习算法计算机视觉人工智能深度学习
官网地址:http://cocodataset.org/#downloadCOCO是一个大规模的物体检测、分割和描述数据集。COCO具有以下特点:物体分割上下文识别超像素材质分割33万张图片(超过20万张有标注)150万个物体实例80个物体类别91个材质类别每张图片有5个描述25万人的关键点COCO数据集是一个多用途的计算机视觉数据集,它支持多种任务,包括但不限于:物体检测(ObjectDetec
- 2025年计算机视觉研究进展与应用国际学术会议 (ACVRA 2025)
GSRA会务组房老师
计算机视觉人工智能数据挖掘图像处理目标检测云计算语言模型
2025年计算机视觉研究进展与应用国际学术会议(ACVRA2025)2025InternationalConferenceonAdvancesinComputerVisionResearchandApplications重要信息2025年3月28-30日南京一轮截稿日期:2024年12月26日EI检索稳定早投稿,早审稿,早录用【会议简介】2025年计算机视觉研究进展与应用国际学术会议(ACVRA2
- 【学术投稿-2025年计算机视觉研究进展与应用国际学术会议 (ACVRA 2025)】CSS样式解析:行内、内部与外部样式的区别与优先级分析
禁默
前端学术会议css前端
简介2025年计算机视觉研究进展与应用(ACVRA2025)将于2025年2月28-3月2日在中国广州召开,会议将汇聚世界各地的顶尖学者、研究人员和行业专家,聚焦计算机视觉领域的最新研究动态与应用成就。本次会议将探讨前沿技术,包括深度学习、多模态学习、图像和视频分析、3D重建等,以及其在智能交通、医疗影像、增强现实和自动化等多个实际应用中的创新转化。会议官网:www.acvra.org目录前言一、
- 位图的深入解析:从数据结构到图像处理与C++实现
Exhausted、
机器学习计算机视觉人工智能图像处理c++算法数据结构开发语言
在学习优选算法课程的时候,博主学习位运算了解到位运算的这个概念,之前没有接触过,就查找了相关的资料,丰富一下自身,当作课外知识来了解一下。位图(Bitmap)是一种用于表示图像的数据结构,它将图像分解为像素的二维网格,每个像素的颜色值存储在一个矩阵中。位图广泛应用于计算机图形学、图像处理和计算机视觉等领域。目录1.位图的基本概念1.1像素1.2分辨率1.3颜色深度2.位图的存储格式2.1BMP格式
- 计算机视觉国内外研究现状(综述)
埃菲尔铁塔_CV算法
计算机视觉
1.国内外研究进展1.2.1特征提取研究进展特征提取是图像处理的一个重要环节,是进行身份识别和行为识别的重要部分。近年来,针对不同特征的提取,国内外学者提出了许多特征提取算法,同样特征提取的效果大都不错。但是在复杂的猪舍环境中提取猪的特征还是比较困难的。下面针对几种目前常用的特征提取算法进行一些介绍。(1)传统的特征提取算法传统特征提取算法已经发展了很久,现阶段比较成熟,是深度学习算法出来之前研究
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- 【鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪】
萌虎不虎
OpenHarmonyharmonyosopencv华为
鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪OpenCV介绍OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库。它由一系列的C函数和少量C++类构成,同时提供Python、Java和MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV具有极广的应用领域,它包括但不限于:人脸识别和物
- 计算机视觉 工业相机、镜头、接口、光源概览及选型参考
坐望云起
深度学习从入门到精通计算机视觉数码相机人工智能镜头接口数据接口镜头
一、相机1、分类按芯片类型分类:CCD相机、CMOS相机按传感器的结构特性分类:线阵相机、面阵相机按输出信号方式分类:模拟相机、数码相机按输出色彩方式分类:黑白相机、彩色相机2、重要参数芯片尺寸芯片尺寸表示图像传感器感光区域的面积大小,直接决定了整个系统的物理放大率。相机的芯片尺寸如图所示。分辨率分辨率表示每英寸包含的像素数。对于图像来说,分辨率是非常重要的,决定了图像是否能够清晰地呈现:相机的分
- 【人工智能】Python中的深度学习优化器:从SGD到Adam
蒙娜丽宁
Python杂谈人工智能人工智能python深度学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在深度学习模型的训练过程中,优化器起着至关重要的作用,它决定了模型的收敛速度以及最终的性能。本文将介绍深度学习中常用的优化器,从传统的随机梯度下降(SGD)到现代的自适应优化器(如Adam)。我们将深入探讨每种优化器的原理、优缺点,并通过Python实现
- 【人工智能】基于Python和OpenCV实现实时人脸识别系统:从基础到应用
蒙娜丽宁
Python杂谈人工智能python开发语言
随着人工智能和计算机视觉的快速发展,人脸识别技术已广泛应用于监控、安全、社交媒体、金融和医疗等领域。本文将介绍如何利用Python和OpenCV库,结合dlib进行实时人脸识别的实现。通过构建一个基础的实时人脸识别系统,读者将深入了解人脸检测与识别的核心原理,掌握如何使用现有的计算机视觉工具快速开发一个有效的实时系统。本文将详细介绍如何通过OpenCV和dlib来实现人脸检测与识别,如何实时获取摄
- 【AI】人工智能没那么神秘!
仇辉攻防
人工智能ai语言模型自然语言处理机器学习深度学习网络安全
AI是什么?人工智能(ArtificialIntelligence),英文缩写为AI。AI人工智能不是简单的应用程序,而是一类技术,包含机器学习、自然语言处理、计算机视觉等多个领域。AI系统通常由算法、数据、模型和代码组成,其中代码用于实现算法,数据用于训练模型,最终形成智能决策能力。AI可以嵌入到应用程序中,但其本身是一个复杂的技术体系。AI为什么这么聪明?AI之所以看起来很聪明,主要是因为它通
- 双目立体视觉(1)
2501_90596733
双目立体视觉人工智能计算机视觉
1.背景计算机视觉技术,是以摄像头作为传感器来获取二维图像数据,并依靠计算机运用各类算法对这些图像数据展开处理。依据所采用视觉传感器数量的差异,可分为单目、双目以及多目视觉这几类。单目视觉依赖单摄像头获取二维平面图像,在知晓物体实际尺寸的前提下,结合相机成像模型能够计算出距离,但这种单一的2D图像在深度感知能力上存在局限,且较易受到动态背景的干扰,通常被应用于缺陷检测、目标识别等相关领域。多目视觉
- 深度学习练手小例子——cifar10数据集分类问题
☆cwlulu
深度学习分类人工智能
CIFAR-10是一个经典的计算机视觉数据集,广泛用于图像分类任务。它包含10个类别的60,000张彩色图像,每张图像的大小是32x32像素。数据集被分为50,000张训练图像和10,000张测试图像。每个类别包含6,000张图像,具体类别包括:飞机(airplane)汽车(automobile)鸟(bird)猫(cat)鹿(deer)狗(dog)青蛙(frog)马(horse)船(ship)卡车
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" {
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持