[2] SSD配置+训练VOC0712+训练自己的数据集

GitHub https://github.com/weiliu89/caffe/tree/ssd

http://blog.csdn.net/u010733679/article/details/52125597

一、安装配置

sudo apt-get install -y liblapack-dev liblapack3 libopenblas-base libopenblas-dev

-------------------------------------------------------------------------------
1.
git clone https://github.com/weiliu89/caffe.git
cd caffe
git checkout ssd

2.Makefile.config
caffe --> SSD/caffe

3.
make -j8
make py
make test -j8
make runtest -j8

4.写入环境变量
sudo gedit /etc/profile

export PYTHONPATH=/home/gjw/SSD/caffe/python    

注销

===================================================

二、测试

[注]下载训练好的模型进行下面的测试
(1)训练好的模型名称:models_VGGNet_VOC0712_SSD_300x300.tar.gz
(2)链接
https://drive.google.com/file/d/0BzKzrI_SkD1_WVVTSmQxU0dVRzA/view
(3)解压,/models/VGGNet--->~/caffe/model

测试一:视频、摄像头

[测试1]
演示网络摄像头识别效果,终端输入:
    python examples/ssd/ssd_pascal_webcam.py
[测试2]
python examples/ssd/ssd_pascal_video.py

测试二: 训练VOC数据集

首先我们不妨先跑一下项目的demo, 需要下载数据集,提前训练好的数据集等。 
下载预训练的模型,链接:https://gist.github.com/weiliu89/2ed6e13bfd5b57cf81d6,
下载完成后保存在:

caffe/models/VGGNet/

1.
下载VOC2007和VOC2012数据集, 放在/data目录下:

cd data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar

tar -xvf VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_06-Nov-2007.tar
tar -xvf VOCtest_06-Nov-2007.tar

2.
创建lmdb格式的数据:

cd caffe
./data/VOC0712/create_list.sh
./data/VOC0712/create_data.sh

3.
(1)
    gpu-->"0,1,2,3"
(2)
    batch_size = 8  #32
    accum_batch_size = 8   #32
(3)训练VOC数据集
    python examples/ssd/ssd_pascal.py

[2] SSD配置+训练VOC0712+训练自己的数据集_第1张图片


************************************************************

************************************************************

三、训练自己的数据集

1.制作VOC2007数据集:labelImg工具

/data/VOCdevkit/driver
/data/VOCdevkit/driver/Annotations
/data/VOCdevkit/driver/ImageSets
/data/VOCdevkit/driver/JPEGImages

2.VOC数据转换成LMDB数据

  SSD提供了VOC数据到LMDB数据的转换脚本 data/VOC0712/create_list.sh 和 

./data/VOC0712/create_data.sh,这两个脚本是完全针对VOC0712目录下的数据进行的转换。
  实现中为了不破坏VOC0712目录下的数据内容,针对我们自己的数据集,修改了上面这两个脚本,
将脚本中涉及到VOC0712的信息替换成我们自己的目录信息。
在处理我们的数据集时,将VOC0712替换成driver。
-------------------------------------------------------------------------------------
(1)mkdir  /home/gjw/SSD/caffe/data/driver
(2)将data/VOC0712下的create_list.sh,create_data.sh,labelmap_voc.prototxt
这三个文件copy到driver目录下
(3)
修改后的这两个文件分别为:
[create_list.sh]
    for name in VOC2007 VOC2012   -->  for name in driver

[create_data.sh]
    dataset_name="VOC0712"  -->  dataset_name="driver"

[labelmap_voc.prototxt]
    将该文件中的类别修改成和自己的数据集相匹配
(4)
    $ ./data/driver/create_list.sh
在/home/gjw/SSD/caffe/data/driver目录下test.txt,test_name_size.txt,trainval.txt

    $ ./data/driver/create_data.sh
在/home/gjw/data/VOCdevkit/driver/lmdb目录下查看转换完成的LMDB数据数据

3. 使用SSD进行自己数据集的训练

VGG_ILSVRC_16_layers_fc_reduced.caffemodel:https://gist.github.com/weiliu89/2ed6e13bfd5

b57cf81d6

http://pan.baidu.com/s/1o8hpU7g 72fm

训练时使用ssd demo中提供的预训练好的VGGnet model : 

VGG_ILSVRC_16_layers_fc_reduced.caffemodel
将该模型保存到$CAFFE_ROOT/models/VGGNet下。

将$CAFFE_ROOT/examples/ssd/ssd_pascal.py copy一份 ssd_pascal_driver.py文件, 根据自己的数据集

修改ssd_pascal_driver.py

主要修改点:
 (1)train_data和test_data修改成指向自己的数据集LMDB
    train_data = "examples/driver/driver_trainval_lmdb"
    test_data =  "examples/driver/driver_test_lmdb"

    save_dir = "models/VGGNet/driver/{}".format(job_name)
    snapshot_dir = "models/VGGNet/driver/{}".format(job_name)
    job_dir = "jobs/VGGNet/person/{}".format(job_name)
    output_result_dir = "{}/data/VOCdevkit/driver/VOC2007/{}/Main".format(os.environ ['HOME'], job_name)

    name_size_file = "data/driver/test_name_size.txt"
    label_map_file = "data/driver/labelmap_voc.prototxt"2) num_test_image该变量修改成自己数据集中测试数据的数量
(3) num_classes 该变量修改成自己数据集中 标签类别数量数 + 14)

batch_size = 1  # 32
accum_batch_size = 1
test_batch_size = 1
base_lr = 0.000004
'max_iter': 120000
'test_interval': 100000



-----------------------------------------------------------------
examples/ssd/ssd_pascal.py
    gpu = '0,1,2,3' --> gpu = '0' 
训练命令:
python examples/ssd/ssd_pascal_driver.py

VGG_VOC0712_SSD_300x300_iter_????.caffemodel存放在目录
    $CAFFE_ROOT/SSD/caffe/models/VGGNet/person/SSD_300x300
1、 训练

sudo gedit ~/SSD/caffe/examples/ssd/ssd_pascal.py
(1)gpus=’0,1,2,3’
(2) 如果出现问题cudasuccess(2vs0)则说明您的显卡计算量有限,再次
    batch_size =32     //32   16   8   4
(3)
cd  ~/SSD/caffe
    python examples/ssd/ssd_pascal.py


2、 精度测试
终端输入:
    python examples\ssd\score_ssd_pascal.py
3、视频、摄像头测试

[准备工作]
    修改E:\caffe\caffe-ssd-microsoft\models\VGGNet\VOC0712
\SSD_300x300下的配置文件deploy.prototxt中的下面两个变量为全路径:
      label_map_file: "E:/caffe/caffe-ssd-microsoft/data/VOC0712/labelmap_voc.prototxt"
      name_size_file: "E:/caffe/caffe-ssd-microsoft/data/VOC0712/test_name_size.txt"

(2)用生成的模型测试本地摄像头:ssd_pascal_webcam.py
修改ssd_pascal_webcam.py的pretrain_model变量为自己刚训练好的模型:
    pretrain_model = "E:/caffe/caffe-ssd-microsoft/models/VGGNet/VOC0712/SSD_300x300/VGG_VOC0712_SSD_300x300_iter_4000.caffemodel"

    python examples\ssd\ssd_pascal_webcam.py

4、 单张图像测试
(1)jupyter notebook
(2)
    python  ssd_detect.py

# coding: utf-8

# # Detection with SSD
# 
# In this example, we will load a SSD model and use it to detect objects.

# ### 1. Setup
# 
# * First, Load necessary libs and set up caffe and caffe_root

# In[1]:

import cv2
import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (10, 10)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# Make sure that caffe is on the python path:
caffe_root = '/home/gjw/SSD/caffe/'  # this file is expected to be in {caffe_root}/examples
import os
os.chdir(caffe_root)
import sys
sys.path.insert(0, 'python')

import caffe
caffe.set_device(0)
caffe.set_mode_gpu()


# * Load LabelMap.

# In[2]:

from google.protobuf import text_format
from caffe.proto import caffe_pb2

# load PASCAL VOC labels
labelmap_file = '/home/gjw/SSD/caffe/data/car/labelmap_voc.prototxt'
file = open(labelmap_file, 'r')
labelmap = caffe_pb2.LabelMap()
text_format.Merge(str(file.read()), labelmap)

def get_labelname(labelmap, labels):
    num_labels = len(labelmap.item)
    labelnames = []
    if type(labels) is not list:
        labels = [labels]
    for label in labels:
        found = False
        for i in xrange(0, num_labels):
            if label == labelmap.item[i].label:
                found = True
                labelnames.append(labelmap.item[i].display_name)
                break
        assert found == True
    return labelnames


# * Load the net in the test phase for inference, and configure input preprocessing.

# In[3]:

model_def ='/home/gjw/SSD/caffe/models/VGGNet/car/SSD_300x300/deploy.prototxt'  ###
model_weights = '/home/gjw/SSD/caffe/models/VGGNet/car/SSD_300x300/VGG_VOC0712_SSD_300x300_iter_15000.caffemodel'  ####

net = caffe.Net(model_def,      # defines the structure of the model
                model_weights,  # contains the trained weights
                caffe.TEST)     # use test mode (e.g., don't perform dropout)

# input preprocessing: 'data' is the name of the input blob == net.inputs[0]
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2, 0, 1))
transformer.set_mean('data', np.array([104,117,123])) # mean pixel
transformer.set_raw_scale('data', 255)  # the reference model operates on images in [0,255] range instead of [0,1]
transformer.set_channel_swap('data', (2,1,0))  # the reference model has channels in BGR order instead of RGB


# 
# 
# ### 2. SSD detection

# * Load an image.

# In[4]:

# set net to batch size of 1
image_resize = 300
net.blobs['data'].reshape(1,3,image_resize,image_resize)

image = caffe.io.load_image('/home/gjw/test/000030.jpg')  ##新建test
#plt.imshow(image)


# * Run the net and examine the top_k results

# In[5]:

transformed_image = transformer.preprocess('data', image)
net.blobs['data'].data[...] = transformed_image

# Forward pass.
detections = net.forward()['detection_out']

# Parse the outputs.
det_label = detections[0,0,:,1]
det_conf = detections[0,0,:,2]
det_xmin = detections[0,0,:,3]
det_ymin = detections[0,0,:,4]
det_xmax = detections[0,0,:,5]
det_ymax = detections[0,0,:,6]

# Get detections with confidence higher than 0.6.
top_indices = [i for i, conf in enumerate(det_conf) if conf >= 0.25]

top_conf = det_conf[top_indices]
top_label_indices = det_label[top_indices].tolist()
top_labels = get_labelname(labelmap, top_label_indices)
top_xmin = det_xmin[top_indices]
top_ymin = det_ymin[top_indices]
top_xmax = det_xmax[top_indices]
top_ymax = det_ymax[top_indices]


# 
# * Plot the boxes


colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist()

plt.imshow(image)
currentAxis = plt.gca()

for i in xrange(top_conf.shape[0]):
    xmin = int(round(top_xmin[i] * image.shape[1]))
    ymin = int(round(top_ymin[i] * image.shape[0]))
    xmax = int(round(top_xmax[i] * image.shape[1]))
    ymax = int(round(top_ymax[i] * image.shape[0]))
    score = top_conf[i]
    label = int(top_label_indices[i])
    label_name = top_labels[i]
    display_txt = '%s: %.2f'%(label_name, score)
    coords = (xmin, ymin), xmax-xmin+1, ymax-ymin+1
    color = colors[label]
    currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor=color, linewidth=2))
    currentAxis.text(xmin, ymin, display_txt, bbox={'facecolor':color, 'alpha':0.5})

plt.show()

你可能感兴趣的:([2] SSD配置+训练VOC0712+训练自己的数据集)