转载 https://blog.csdn.net/qq_35154529/article/details/82754157
np.linalg.norm(求范数):linalg=linear(线性)+algebra(代数),norm则表示范数。
函数参数
x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False)
①x: 表示矩阵(也可以是一维)
②ord:范数类型
矩阵的范数:
ord=1:列和的最大值
ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根
ord=∞:行和的最大值
③axis:处理类型
axis=1表示按行向量处理,求多个行向量的范数
axis=0表示按列向量处理,求多个列向量的范数
axis=None表示矩阵范数。
④keepding:是否保持矩阵的二维特性
True表示保持矩阵的二维特性,False相反
向量范数:
1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。
2-范数:,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab调用函数norm(x, 2)。
∞-范数:,即所有向量元素绝对值中的最大值,matlab调用函数norm(x, inf)。
-∞-范数:,即所有向量元素绝对值中的最小值,matlab调用函数norm(x, -inf)。
p-范数:,即向量元素绝对值的p次方和的1/p次幂,matlab调用函数norm(x, p)。
矩阵范数:
1-范数:, 列和范数,即所有矩阵列向量绝对值之和的最大值,matlab调用函数norm(A, 1)。
2-范数:,谱范数,即A’A矩阵的最大特征值的开平方。matlab调用函数norm(x, 2)。
∞-范数:,行和范数,即所有矩阵行向量绝对值之和的最大值,matlab调用函数norm(A, inf)。
F-范数:,Frobenius范数,即矩阵元素绝对值的平方和再开平方,matlab调用函数norm(A, ’fro‘)。
import numpy as np
x1=np.array([1,5,6,3,-1])
x2=np.arange(12).reshape(3,4)
print x1,’\n’,x2
print ‘向量2范数:’
print np.linalg.norm(x1)
print np.linalg.norm(x1,ord=2)
print ‘默认的矩阵范数:’
print np.linalg.norm(x2)
print ‘矩阵2范数:’
print np.linalg.norm(x2,ord=2)
经测试知:
np.linalg.norm(X),X为向量时,默认求向量2范数,即求向量元素绝对值的平方和再开方;
作者:104109121
来源:CSDN
原文:https://blog.csdn.net/qq_35154529/article/details/82754157
版权声明:本文为博主原创文章,转载请附上博文链接!