一,基本介绍
本文主要讲spark2.0版本以后存在的Sparksql的一些实用的函数,帮助解决复杂嵌套的json数据格式,比如,map和嵌套结构。Spark2.1在spark 的Structured Streaming也可以使用这些功能函数。
下面几个是本文重点要讲的方法。
A),get_json_object()
B),from_json()
C),to_json()
D),explode()
E),selectExpr()
二,准备阶段
首先,创建一个没有任何嵌套的JSon Schema
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions._
val jsonSchema = new StructType().add(“battery_level”, LongType).add(“c02_level”, LongType).add(“cca3”,StringType).add(“cn”, StringType).add(“device_id”, LongType).add(“device_type”, StringType).add(“signal”, LongType).add(“ip”, StringType).add(“temp”, LongType).add(“timestamp”, TimestampType)
使用上面的schema,我在这里创建一个Dataframe,使用的是scala 的case class,同时会产生一些json格式的数据。当然,生产中这些数据也可以来自于kafka。这个case class总共有两个字段:整型(作为device id)和一个字符串(json的数据结构,代表设备的事件)
// define a case class
case class DeviceData (id: Int, device: String)
// create some sample data
val eventsDS = Seq (
(0, “”"{“device_id”: 0, “device_type”: “sensor-ipad”, “ip”: “68.161.225.1”, “cca3”: “USA”, “cn”: “United States”, “temp”: 25, “signal”: 23, “battery_level”: 8, “c02_level”: 917, “timestamp” :1475600496 }"""),
(1, “”"{“device_id”: 1, “device_type”: “sensor-igauge”, “ip”: “213.161.254.1”, “cca3”: “NOR”, “cn”: “Norway”, “temp”: 30, “signal”: 18, “battery_level”: 6, “c02_level”: 1413, “timestamp” :1475600498 }"""),
(2, “”"{“device_id”: 2, “device_type”: “sensor-ipad”, “ip”: “88.36.5.1”, “cca3”: “ITA”, “cn”: “Italy”, “temp”: 18, “signal”: 25, “battery_level”: 5, “c02_level”: 1372, “timestamp” :1475600500 }"""),
(3, “”"{“device_id”: 3, “device_type”: “sensor-inest”, “ip”: “66.39.173.154”, “cca3”: “USA”, “cn”: “United States”, “temp”: 47, “signal”: 12, “battery_level”: 1, “c02_level”: 1447, “timestamp” :1475600502 }"""),
(4, “”"{“device_id”: 4, “device_type”: “sensor-ipad”, “ip”: “203.82.41.9”, “cca3”: “PHL”, “cn”: “Philippines”, “temp”: 29, “signal”: 11, “battery_level”: 0, “c02_level”: 983, “timestamp” :1475600504 }"""),
(5, “”"{“device_id”: 5, “device_type”: “sensor-istick”, “ip”: “204.116.105.67”, “cca3”: “USA”, “cn”: “United States”, “temp”: 50, “signal”: 16, “battery_level”: 8, “c02_level”: 1574, “timestamp” :1475600506 }"""),
(6, “”"{“device_id”: 6, “device_type”: “sensor-ipad”, “ip”: “220.173.179.1”, “cca3”: “CHN”, “cn”: “China”, “temp”: 21, “signal”: 18, “battery_level”: 9, “c02_level”: 1249, “timestamp” :1475600508 }"""),
(7, “”"{“device_id”: 7, “device_type”: “sensor-ipad”, “ip”: “118.23.68.227”, “cca3”: “JPN”, “cn”: “Japan”, “temp”: 27, “signal”: 15, “battery_level”: 0, “c02_level”: 1531, “timestamp” :1475600512 }"""),
(8 ,""" {“device_id”: 8, “device_type”: “sensor-inest”, “ip”: “208.109.163.218”, “cca3”: “USA”, “cn”: “United States”, “temp”: 40, “signal”: 16, “battery_level”: 9, “c02_level”: 1208, “timestamp” :1475600514 }"""),
(9,"""{“device_id”: 9, “device_type”: “sensor-ipad”, “ip”: “88.213.191.34”, “cca3”: “ITA”, “cn”: “Italy”, “temp”: 19, “signal”: 11, “battery_level”: 0, “c02_level”: 1171, “timestamp” :1475600516 }"""),
(10,"""{“device_id”: 10, “device_type”: “sensor-igauge”, “ip”: “68.28.91.22”, “cca3”: “USA”, “cn”: “United States”, “temp”: 32, “signal”: 26, “battery_level”: 7, “c02_level”: 886, “timestamp” :1475600518 }"""),
(11,"""{“device_id”: 11, “device_type”: “sensor-ipad”, “ip”: “59.144.114.250”, “cca3”: “IND”, “cn”: “India”, “temp”: 46, “signal”: 25, “battery_level”: 4, “c02_level”: 863, “timestamp” :1475600520 }"""),
(12, “”"{“device_id”: 12, “device_type”: “sensor-igauge”, “ip”: “193.156.90.200”, “cca3”: “NOR”, “cn”: “Norway”, “temp”: 18, “signal”: 26, “battery_level”: 8, “c02_level”: 1220, “timestamp” :1475600522 }"""),
(13, “”"{“device_id”: 13, “device_type”: “sensor-ipad”, “ip”: “67.185.72.1”, “cca3”: “USA”, “cn”: “United States”, “temp”: 34, “signal”: 20, “battery_level”: 8, “c02_level”: 1504, “timestamp” :1475600524 }"""),
(14, “”"{“device_id”: 14, “device_type”: “sensor-inest”, “ip”: “68.85.85.106”, “cca3”: “USA”, “cn”: “United States”, “temp”: 39, “signal”: 17, “battery_level”: 8, “c02_level”: 831, “timestamp” :1475600526 }"""),
(15, “”"{“device_id”: 15, “device_type”: “sensor-ipad”, “ip”: “161.188.212.254”, “cca3”: “USA”, “cn”: “United States”, “temp”: 27, “signal”: 26, “battery_level”: 5, “c02_level”: 1378, “timestamp” :1475600528 }"""),
(16, “”"{“device_id”: 16, “device_type”: “sensor-igauge”, “ip”: “221.3.128.242”, “cca3”: “CHN”, “cn”: “China”, “temp”: 10, “signal”: 24, “battery_level”: 6, “c02_level”: 1423, “timestamp” :1475600530 }"""),
(17, “”"{“device_id”: 17, “device_type”: “sensor-ipad”, “ip”: “64.124.180.215”, “cca3”: “USA”, “cn”: “United States”, “temp”: 38, “signal”: 17, “battery_level”: 9, “c02_level”: 1304, “timestamp” :1475600532 }"""),
(18, “”"{“device_id”: 18, “device_type”: “sensor-igauge”, “ip”: “66.153.162.66”, “cca3”: “USA”, “cn”: “United States”, “temp”: 26, “signal”: 10, “battery_level”: 0, “c02_level”: 902, “timestamp” :1475600534 }"""),
(19, “”"{“device_id”: 19, “device_type”: “sensor-ipad”, “ip”: “193.200.142.254”, “cca3”: “AUT”, “cn”: “Austria”, “temp”: 32, “signal”: 27, “battery_level”: 5, “c02_level”: 1282, “timestamp” :1475600536 }""")).toDF(“id”, “device”).as[DeviceData]
三,如何使用get_json_object()
该方法从spark1.6开始就有了,从一个json 字符串中根据指定的json 路径抽取一个json 对象。从上面的dataset中取出部分数据,然后抽取部分字段组装成新的json 对象。比如,我们仅仅抽取:id,devicetype,ip,CCA3 code.
val eventsFromJSONDF = Seq (
(0, “”"{“device_id”: 0, “device_type”: “sensor-ipad”, “ip”: “68.161.225.1”, “cca3”: “USA”, “cn”: “United States”, “temp”: 25, “signal”: 23, “battery_level”: 8, “c02_level”: 917, “timestamp” :1475600496 }"""),
(1, “”"{“device_id”: 1, “device_type”: “sensor-igauge”, “ip”: “213.161.254.1”, “cca3”: “NOR”, “cn”: “Norway”, “temp”: 30, “signal”: 18, “battery_level”: 6, “c02_level”: 1413, “timestamp” :1475600498 }"""),
(2, “”"{“device_id”: 2, “device_type”: “sensor-ipad”, “ip”: “88.36.5.1”, “cca3”: “ITA”, “cn”: “Italy”, “temp”: 18, “signal”: 25, “battery_level”: 5, “c02_level”: 1372, “timestamp” :1475600500 }"""),
(3, “”"{“device_id”: 3, “device_type”: “sensor-inest”, “ip”: “66.39.173.154”, “cca3”: “USA”, “cn”: “United States”, “temp”: 47, “signal”: 12, “battery_level”: 1, “c02_level”: 1447, “timestamp” :1475600502 }"""),
(4, “”"{“device_id”: 4, “device_type”: “sensor-ipad”, “ip”: “203.82.41.9”, “cca3”: “PHL”, “cn”: “Philippines”, “temp”: 29, “signal”: 11, “battery_level”: 0, “c02_level”: 983, “timestamp” :1475600504 }"""),
(5, “”"{“device_id”: 5, “device_type”: “sensor-istick”, “ip”: “204.116.105.67”, “cca3”: “USA”, “cn”: “United States”, “temp”: 50, “signal”: 16, “battery_level”: 8, “c02_level”: 1574, “timestamp” :1475600506 }"""),
(6, “”"{“device_id”: 6, “device_type”: “sensor-ipad”, “ip”: “220.173.179.1”, “cca3”: “CHN”, “cn”: “China”, “temp”: 21, “signal”: 18, “battery_level”: 9, “c02_level”: 1249, “timestamp” :1475600508 }"""),
(7, “”"{“device_id”: 7, “device_type”: “sensor-ipad”, “ip”: “118.23.68.227”, “cca3”: “JPN”, “cn”: “Japan”, “temp”: 27, “signal”: 15, “battery_level”: 0, “c02_level”: 1531, “timestamp” :1475600512 }"""),
(8 ,""" {“device_id”: 8, “device_type”: “sensor-inest”, “ip”: “208.109.163.218”, “cca3”: “USA”, “cn”: “United States”, “temp”: 40, “signal”: 16, “battery_level”: 9, “c02_level”: 1208, “timestamp” :1475600514 }"""),
(9,"""{“device_id”: 9, “device_type”: “sensor-ipad”, “ip”: “88.213.191.34”, “cca3”: “ITA”, “cn”: “Italy”, “temp”: 19, “signal”: 11, “battery_level”: 0, “c02_level”: 1171, “timestamp” :1475600516 }""")).toDF(“id”, “json”)
测试及输出
val jsDF = eventsFromJSONDF.select( " i d " , g e t j s o n o b j e c t ( "id", get_json_object( "id",getjsonobject(“json”, " . d e v i c e t y p e " ) . a l i a s ( " d e v i c e t y p e " ) , g e t j s o n o b j e c t ( .device_type").alias("device_type"),get_json_object( .devicetype").alias("devicetype"),getjsonobject(“json”, " . i p " ) . a l i a s ( " i p " ) , g e t j s o n o b j e c t ( .ip").alias("ip"),get_json_object( .ip").alias("ip"),getjsonobject(“json”, “$.cca3”).alias(“cca3”))
jsDF.printSchema
jsDF.show
四,如何使用from_json()
与get_json_object不同的是该方法,使用schema去抽取单独列。在dataset的api select中使用from_json()方法,我可以从一个json 字符串中按照指定的schema格式抽取出来作为DataFrame的列。还有,我们也可以将所有在json中的属性和值当做一个devices的实体。我们不仅可以使用device.arrtibute去获取特定值,也可以使用*通配符。
下面的例子,主要实现如下功能:
A),使用上述schema从json字符串中抽取属性和值,并将它们视为devices的独立列。
B),select所有列
C),使用.,获取部分列。
val devicesDF = eventsDS.select(from_json( " d e v i c e " , j s o n S c h e m a ) a s " d e v i c e s " ) . s e l e c t ( "device", jsonSchema) as "devices").select( "device",jsonSchema)as"devices").select(“devices.*”).filter($“devices.temp” > 10 and $“devices.signal” > 15)
五,如何使用to_json()
下面使用to_json()将获取的数据转化为json格式。将结果重新写入kafka或者保存partquet文件。
val stringJsonDF = eventsDS.select(to_json(struct($"*"))).toDF(“devices”)
stringJsonDF.show
保存数据到kafka
stringJsonDF.write.format(“kafka”).option(“kafka.bootstrap.servers”, “localhost:9092”).option(“topic”, “iot-devices”).save()
注意依赖
groupId = org.apache.spark
artifactId = spark-sql-kafka-0-10_2.11
version = 2.1.0
六,如何使用selectExpr()
将列转化为一个JSON对象的另一种方式是使用selectExpr()功能函数。例如我们可以将device列转化为一个JSON对象。
val stringsDF = eventsDS.selectExpr(“CAST(id AS INT)”, “CAST(device AS STRING)”)
stringsDF.show
SelectExpr()方法的另一个用法,就是使用表达式作为参数,将它们转化为指定的列。如下:
devicesDF.selectExpr(“c02_level”, “round(c02_level/temp) as ratio_c02_temperature”).orderBy($“ratio_c02_temperature” desc).show
使用Sparksql的slq语句是很好写的
首先注册成临时表,然后写sql
devicesDF.createOrReplaceTempView(“devicesDFT”)
spark.sql(“select c02_level,round(c02_level/temp) as ratio_c02_temperature from devicesDFT order by ratio_c02_temperature desc”).show
七,验证
为了验证我们的DataFrame转化为json String是成功的我们将结果写入本地磁盘。
stringJsonDF.write.mode(“overwrite”).format(“parquet”).save(“file:///opt/jules”)
读入
val parquetDF = spark.read.parquet(“file:///opt/jules”)
一,准备阶段
Json格式里面有map结构和嵌套json也是很合理的。本文将举例说明如何用spark解析包含复杂的嵌套数据结构,map。现实中的例子是,一个设备的检测事件,二氧化碳的安全你浓度,高温数据等,需要实时产生数据,然后及时的告警处理。
1,定义schema
import org.apache.spark.sql.types._
val schema = new StructType()
.add(“dc_id”, StringType) // data center where data was posted to Kafka cluster
.add(“source”, // info about the source of alarm
MapType( // define this as a Map(Key->value)
StringType,
new StructType()
.add(“description”, StringType)
.add(“ip”, StringType)
.add(“id”, LongType)
.add(“temp”, LongType)
.add(“c02_level”, LongType)
.add(“geo”,
new StructType()
.add(“lat”, DoubleType)
.add(“long”, DoubleType)
)
)
)
2,准备数据
val dataDS = Seq("""
{
“dc_id”: “dc-101”,
“source”: {
“sensor-igauge”: {
“id”: 10,
“ip”: “68.28.91.22”,
“description”: “Sensor attached to the container ceilings”,
“temp”:35,
“c02_level”: 1475,
“geo”: {“lat”:38.00, “long”:97.00}
},
“sensor-ipad”: {
“id”: 13,
“ip”: “67.185.72.1”,
“description”: “Sensor ipad attached to carbon cylinders”,
“temp”: 34,
“c02_level”: 1370,
“geo”: {“lat”:47.41, “long”:-122.00}
},
“sensor-inest”: {
“id”: 8,
“ip”: “208.109.163.218”,
“description”: “Sensor attached to the factory ceilings”,
“temp”: 40,
“c02_level”: 1346,
“geo”: {“lat”:33.61, “long”:-111.89}
},
“sensor-istick”: {
“id”: 5,
“ip”: “204.116.105.67”,
“description”: “Sensor embedded in exhaust pipes in the ceilings”,
“temp”: 40,
“c02_level”: 1574,
“geo”: {“lat”:35.93, “long”:-85.46}
}
}
}""").toDS()
// should only be one item
dataDS.count()
3,准备处理
val df = spark.read.schema(schema).json(dataDS.rdd)
查看schema
df.printSchema
二,如何使用explode()
Explode()方法在spark1.3的时候就已经存在了,在这里展示一下如何抽取嵌套的数据结构。在一些场合,会结合explode,to_json,from_json一起使用。
Explode为给定的map的每一个元素创建一个新的行。比如上面准备的数据,source就是一个map结构。Map中的每一个key/value对都会是一个独立的行。
val explodedDF = df.select( " d c i d " , e x p l o d e ( "dc_id", explode( "dcid",explode(“source”))
explodedDF.printSchema
可以看看操作之后的schema信息
获取内部的 数据
case class DeviceAlert(dcId: String, deviceType:String, ip:String, deviceId:Long, temp:Long, c02_level: Long, lat: Double, lon: Double)
val notifydevicesDS = explodedDF.select( $“dc_id” as “dcId”,
$“key” as “deviceType”,
'value.getItem(“ip”) as 'ip,
'value.getItem(“id”) as 'deviceId,
'value.getItem(“c02_level”) as 'c02_level,
'value.getItem(“temp”) as 'temp,
'value.getItem(“geo”).getItem(“lat”) as 'lat, //note embedded level requires yet another level of fetching.
'value.getItem(“geo”).getItem(“long”) as 'lon)
.as[DeviceAlert] // return as a Dataset
查看schema信息
notifydevicesDS.printSchema
三,再复杂一点
在物联网场景里,通畅物联网设备会将很多json 事件数据发给他的收集器。收集器可以是附近的数据中心,也可以是附近的聚合器,也可以是安装在家里的一个设备,它会有规律的周期的将数据通过加密的互联网发给远程的数据中心。说白一点,数据格式更复杂。
我们下面会有三个map的数据格式:恒温计,摄像机,烟雾报警器。
import org.apache.spark.sql.types._
// a bit longish, nested, and convuloted JSON schema
val nestSchema2 = new StructType()
.add(“devices”,
new StructType()
.add(“thermostats”, MapType(StringType,
new StructType()
.add(“device_id”, StringType)
.add(“locale”, StringType)
.add(“software_version”, StringType)
.add(“structure_id”, StringType)
.add(“where_name”, StringType)
.add(“last_connection”, StringType)
.add(“is_online”, BooleanType)
.add(“can_cool”, BooleanType)
.add(“can_heat”, BooleanType)
.add(“is_using_emergency_heat”, BooleanType)
.add(“has_fan”, BooleanType)
.add(“fan_timer_active”, BooleanType)
.add(“fan_timer_timeout”, StringType)
.add(“temperature_scale”, StringType)
.add(“target_temperature_f”, DoubleType)
.add(“target_temperature_high_f”, DoubleType)
.add(“target_temperature_low_f”, DoubleType)
.add(“eco_temperature_high_f”, DoubleType)
.add(“eco_temperature_low_f”, DoubleType)
.add(“away_temperature_high_f”, DoubleType)
.add(“away_temperature_low_f”, DoubleType)
.add(“hvac_mode”, StringType)
.add(“humidity”, LongType)
.add(“hvac_state”, StringType)
.add(“is_locked”, StringType)
.add(“locked_temp_min_f”, DoubleType)
.add(“locked_temp_max_f”, DoubleType)))
.add(“smoke_co_alarms”, MapType(StringType,
new StructType()
.add(“device_id”, StringType)
.add(“locale”, StringType)
.add(“software_version”, StringType)
.add(“structure_id”, StringType)
.add(“where_name”, StringType)
.add(“last_connection”, StringType)
.add(“is_online”, BooleanType)
.add(“battery_health”, StringType)
.add(“co_alarm_state”, StringType)
.add(“smoke_alarm_state”, StringType)
.add(“is_manual_test_active”, BooleanType)
.add(“last_manual_test_time”, StringType)
.add(“ui_color_state”, StringType)))
.add(“cameras”, MapType(StringType,
new StructType()
.add(“device_id”, StringType)
.add(“software_version”, StringType)
.add(“structure_id”, StringType)
.add(“where_name”, StringType)
.add(“is_online”, BooleanType)
.add(“is_streaming”, BooleanType)
.add(“is_audio_input_enabled”, BooleanType)
.add(“last_is_online_change”, StringType)
.add(“is_video_history_enabled”, BooleanType)
.add(“web_url”, StringType)
.add(“app_url”, StringType)
.add(“is_public_share_enabled”, BooleanType)
.add(“activity_zones”,
new StructType()
.add(“name”, StringType)
.add(“id”, LongType))
.add(“last_event”, StringType))))
对应的数据
val nestDataDS2 = Seq("""{
“devices”: {
“thermostats”: {
“peyiJNo0IldT2YlIVtYaGQ”: {
“device_id”: “peyiJNo0IldT2YlIVtYaGQ”,
“locale”: “en-US”,
“software_version”: “4.0”,
“structure_id”: “VqFabWH21nwVyd4RWgJgNb292wa7hG_dUwo2i2SG7j3-BOLY0BA4sw”,
“where_name”: “Hallway Upstairs”,
“last_connection”: “2016-10-31T23:59:59.000Z”,
“is_online”: true,
“can_cool”: true,
“can_heat”: true,
“is_using_emergency_heat”: true,
“has_fan”: true,
“fan_timer_active”: true,
“fan_timer_timeout”: “2016-10-31T23:59:59.000Z”,
“temperature_scale”: “F”,
“target_temperature_f”: 72,
“target_temperature_high_f”: 80,
“target_temperature_low_f”: 65,
“eco_temperature_high_f”: 80,
“eco_temperature_low_f”: 65,
“away_temperature_high_f”: 80,
“away_temperature_low_f”: 65,
“hvac_mode”: “heat”,
“humidity”: 40,
“hvac_state”: “heating”,
“is_locked”: true,
“locked_temp_min_f”: 65,
“locked_temp_max_f”: 80
}
},
“smoke_co_alarms”: {
“RTMTKxsQTCxzVcsySOHPxKoF4OyCifrs”: {
“device_id”: “RTMTKxsQTCxzVcsySOHPxKoF4OyCifrs”,
“locale”: “en-US”,
“software_version”: “1.01”,
“structure_id”: “VqFabWH21nwVyd4RWgJgNb292wa7hG_dUwo2i2SG7j3-BOLY0BA4sw”,
“where_name”: “Jane’s Room”,
“last_connection”: “2016-10-31T23:59:59.000Z”,
“is_online”: true,
“battery_health”: “ok”,
“co_alarm_state”: “ok”,
“smoke_alarm_state”: “ok”,
“is_manual_test_active”: true,
“last_manual_test_time”: “2016-10-31T23:59:59.000Z”,
“ui_color_state”: “gray”
}
},
“cameras”: {
“awJo6rH0IldT2YlIVtYaGQ”: {
“device_id”: “awJo6rH”,
“software_version”: “4.0”,
“structure_id”: “VqFabWH21nwVyd4RWgJgNb292wa7hG_dUwo2i2SG7j3-BOLY0BA4sw”,
“where_name”: “Foyer”,
“is_online”: true,
“is_streaming”: true,
“is_audio_input_enabled”: true,
“last_is_online_change”: “2016-12-29T18:42:00.000Z”,
“is_video_history_enabled”: true,
“web_url”: “https://home.nest.com/cameras/device_id?auth=access_token”,
“app_url”: “nestmobile://cameras/device_id?auth=access_token”,
“is_public_share_enabled”: true,
“activity_zones”: { “name”: “Walkway”, “id”: 244083 },
“last_event”: “2016-10-31T23:59:59.000Z”
}
}
}
}""").toDS
通过创建一个简单的dataset,我们可以使用所有的dataset的方法来进行ETL操作,比如from_json(), to_json(), explode() and selectExpr()。
val nestDF2 = spark // spark session
.read // get DataFrameReader
.schema(nestSchema2) // use the defined schema above and read format as JSON
.json(nestDataDS2.rdd)
2,将整个json对象,转化为一个json string
val stringJsonDF = nestDF2.select(to_json(struct($"*"))).toDF(“nestDevice”)
3,将三个json object 的map对象抓化为三个单独的map列,然后可以是使用explode方法访问其属性。
val mapColumnsDF = nestDF2.select($“devices”.getItem(“smoke_co_alarms”).alias (“smoke_alarms”),
$“devices”.getItem(“cameras”).alias (“cameras”),
$“devices”.getItem(“thermostats”).alias (“thermostats”))
转化为三个dataframe
val explodedThermostatsDF = mapColumnsDF.select(explode( " t h e r m o s t a t s " ) ) v a l e x p l o d e d C a m e r a s D F = m a p C o l u m n s D F . s e l e c t ( e x p l o d e ( "thermostats")) val explodedCamerasDF = mapColumnsDF.select(explode( "thermostats"))valexplodedCamerasDF=mapColumnsDF.select(explode(“cameras”))
//or you could use the original nestDF2 and use the devices.X notation
val explodedSmokedAlarmsDF = nestDF2.select(explode($“devices.smoke_co_alarms”))
查看其schema
explodedThermostatsDF.printSchema
访问三个map内部的元素
val thermostateDF = explodedThermostatsDF.select($“value”.getItem(“device_id”).alias(“device_id”),
$“value”.getItem(“locale”).alias(“locale”),
$“value”.getItem(“where_name”).alias(“location”),
$“value”.getItem(“last_connection”).alias(“last_connected”),
$“value”.getItem(“humidity”).alias(“humidity”),
$“value”.getItem(“target_temperature_f”).alias(“target_temperature_f”),
$“value”.getItem(“hvac_mode”).alias(“mode”),
$“value”.getItem(“software_version”).alias(“version”))
val cameraDF = explodedCamerasDF.select($“value”.getItem(“device_id”).alias(“device_id”),
$“value”.getItem(“where_name”).alias(“location”),
$“value”.getItem(“software_version”).alias(“version”),
$“value”.getItem(“activity_zones”).getItem(“name”).alias(“name”),
$“value”.getItem(“activity_zones”).getItem(“id”).alias(“id”))
val smokedAlarmsDF = explodedSmokedAlarmsDF.select($“value”.getItem(“device_id”).alias(“device_id”),
$“value”.getItem(“where_name”).alias(“location”),
$“value”.getItem(“software_version”).alias(“version”),
$“value”.getItem(“last_connection”).alias(“last_connected”),
$“value”.getItem(“battery_health”).alias(“battery_health”))
查看内部数据
cameraDF.show
通过version进行join操作
val joineDFs = thermostateDF.join(cameraDF, “version”)
四,总结
这篇文章的重点是介绍几个好用的工具,去获取复杂的嵌套的json数据格式。一旦你将嵌套数据扁平化之后,再进行访问,就跟普通的数据格式没啥区别了。