RPC,即 Remote Procedure Call(远程过程调用),是一个计算机通信协议。 该协议允许运行于一台计算机的程序调用另一台计算机的子程序,而程序员无需额外地为这个交互作用编程。说得通俗一点就是:A计算机提供一个服务,B计算机可以像调用本地服务那样调用A计算机的服务。
通过上面的概念,我们可以知道,实现RPC主要是做到两点:
Http协议:超文本传输协议,是一种应用层协议。规定了网络传输的请求格式、响应格式、资源定位和操作的方式等。但是底层采用什么网络传输协议,并没有规定,不过现在都是采用TCP协议作为底层传输协议。说到这里,大家可能觉得,Http与RPC的远程调用非常像,都是按照某种规定好的数据格式进行网络通信,有请求,有响应。没错,在这点来看,两者非常相似,但是还是有一些细微差别。
Spring提供了一个RestTemplate模板工具类,对基于Http的客户端
进行了封装,并且实现了对象与json的序列化和反序列化,非常方便。RestTemplate并没有限定Http的客户端类型,而是进行了抽象,目前常用的3种都有支持:
首先在项目中注册一个RestTemplate
对象,可以在启动类位置注册:
@SpringBootApplication
public class HttpDemoApplication {
public static void main(String[] args) {
SpringApplication.run(HttpDemoApplication.class, args);
}
@Bean
public RestTemplate restTemplate() {
// 默认的RestTemplate,底层是走JDK的URLConnection方式。
return new RestTemplate();
}
}
在测试类中直接@Autowired
注入:
@RunWith(SpringRunner.class)
@SpringBootTest(classes = HttpDemoApplication.class)
public class HttpDemoApplicationTests {
@Autowired
private RestTemplate restTemplate;
@Test
public void httpGet() {
User user = this.restTemplate.getForObject("http://localhost/hello", User.class);
System.out.println(user);
}
}
use-service-demo:一个提供根据id查询用户的微服务
consumer-demo:一个服务调用者,通过RestTemplate远程调用user-service-demo
存在什么问题?
在consumer中,我们把url地址硬编码到了代码中,不方便后期维护
consumer需要记忆user-service的地址,如果出现变更,可能得不到通知,地址将失效
consumer不清楚user-service的状态,服务宕机也不知道
user-service只有1台服务,不具备高可用性
即便user-service形成集群,consumer还需自己实现负载均衡
其实上面说的问题,概括一下就是分布式服务必然要面临的问题:
问题分析
在刚才的案例中,user-service对外提供服务,需要对外暴露自己的地址。而consumer(调用者)需要记录服务提供者的地址。将来地址出现变更,还需要及时更新。
Eureka做什么?
Eureka就好比是滴滴,负责管理、记录服务提供者的信息。服务调用者无需自己寻找服务,而是把自己的需求告诉Eureka,然后Eureka会把符合你需求的服务告诉你。
同时,服务提供方与Eureka之间通过“心跳”
机制进行监控,当某个服务提供方出现问题,Eureka自然会把它从服务列表中剔除。
这就实现了服务的自动注册、发现、状态监控。
@Service
public class UserService {
@Autowired
private RestTemplate restTemplate;
@Autowired
private DiscoveryClient discoveryClient;// Eureka客户端,可以获取到服务实例信息
public List queryUserByIds(List ids) {
List users = new ArrayList<>();
// String baseUrl = "http://localhost:8081/user/";
// 根据服务名称,获取服务实例
List instances = discoveryClient.getInstances("user-service");
// 因为只有一个UserService,因此我们直接get(0)获取
ServiceInstance instance = instances.get(0);
// 获取ip和端口信息
String baseUrl = "http://"+instance.getHost() + ":" + instance.getPort()+"/user/";
ids.forEach(id -> {
// 我们测试多次查询,
users.add(this.restTemplate.getForObject(baseUrl + id, User.class));
// 每次间隔500毫秒
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
});
return users;
}
}
接下来我们详细讲解Eureka的原理及配置。
Eureka架构中的三个核心角色:
服务注册中心
Eureka的服务端应用,提供服务注册和发现功能,就是刚刚我们建立的eureka-demo
服务提供者
提供服务的应用,可以是SpringBoot应用,也可以是其它任意技术实现,只要对外提供的是Rest风格服务即可。本例中就是我们实现的user-service-demo
服务消费者
消费应用从注册中心获取服务列表,从而得知每个服务方的信息,知道去哪里调用服务方。本例中就是我们实现的consumer-demo
Eureka Server即服务的注册中心,在刚才的案例中,我们只有一个EurekaServer,事实上EurekaServer也可以是一个集群,形成高可用的Eureka中心。
服务同步
多个Eureka Server之间也会互相注册为服务,当服务提供者注册到Eureka Server集群中的某个节点时,该节点会把服务的信息同步给集群中的每个节点,从而实现数据同步。因此,无论客户端访问到Eureka Server集群中的任意一个节点,都可以获取到完整的服务列表信息。
> 动手搭建高可用的EurekaServer 。。。参考day2认识微服务架构 --高可用的Eureka Server
在注册服务完成以后,服务提供者会维持一个心跳(定时向EurekaServer发起Rest请求),告诉EurekaServer:“我还活着”。这个我们称为服务的续约(renew);
有两个重要参数可以修改服务续约的行为:
eureka:
instance:
lease-expiration-duration-in-seconds: 90
lease-renewal-interval-in-seconds: 30
也就是说,默认情况下每个30秒服务会向注册中心发送一次心跳,证明自己还活着。如果超过90秒没有发送心跳,EurekaServer就会认为该服务宕机,会从服务列表中移除,这两个值在生产环境不要修改,默认即可。
在刚才的案例中,我们启动了一个user-service,然后通过DiscoveryClient来获取服务实例信息,然后获取ip和端口来访问。
但是实际环境中,我们往往会开启很多个user-service的集群。此时我们获取的服务列表中就会有多个,到底该访问哪一个呢?
一般这种情况下我们就需要编写负载均衡算法,在多个实例列表中进行选择。
不过Eureka中已经帮我们集成了负载均衡组件Ribbon,所以我们无需引入新的依赖,简单修改代码即可使用。开启负载均衡在RestTemplate的配置方法上添加@LoadBalanced
注解:
Ribbon默认的负载均衡策略是简单的轮询,修改配置也可以变成随机策略开启Ribbon,修改配置
Eureka的服务治理强调了CAP原则中的AP,即可用性和可靠性。它与Zookeeper这一类强调CP(一致性,可靠性)的服务治理框架最大的区别在于:Eureka为了实现更高的服务可用性,牺牲了一定的一致性,极端情况下它宁愿接收故障实例也不愿丢掉健康实例,正如我们上面所说的自我保护机制。
但是,此时如果我们调用了这些不正常的服务,调用就会失败,从而导致其它服务不能正常工作!这显然不是我们愿意看到的。
因此Spring Cloud 整合了Spring Retry 来增强RestTemplate的重试能力,当一次服务调用失败后,不会立即抛出一次,而是再次重试另一个服务。配置Retry,和实现Ribbon重试
@EnableHystrix
,且Hystix是基于Ribbon运行的。