- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- 目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究(续)
林聪木
目标检测YOLO深度学习
目录基于双蓝图卷积的轻量化自动驾驶目标检测算法5.1引言5.2DarkNet53网络冗余性分析5.3双蓝图卷积网络5.4实验结果及分析基于深度学习的自动驾驶目标检测算法研究与应用传统的目标检测算法目标检测基线算法性能对比与选择相关理论和算法基础2.1引言2.2人工神经网络2.3FCOS目标检测算法2.4复杂交通场景下的目标检测难点与FCOS改进方案基于FCOS的目标检测算法改进3.1引言3.2Re
- 重生学AI第十五集:学习非线性激活函数
背景知识激活是什么意思?“激活”一词来源于生物学神经系统,在人的大脑中,存在着大量的神经元。每个神经元在接收到足够强的刺激时,会被激活,产生电信号并传递给其他神经元。这些电信号在神经网络中层层流动,最终形成了大脑对外界信息的反应。神经元就等同于人工神经网络中的基本计算单元,每一个网络层都包含着许多这样的神经元,激活函数就是为了能够判断输入是否达到“激活”标准,达到激活标准,则会影响后续计算,反之,
- 蒙特卡罗方法与深度学习的关系
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
蒙特卡罗方法与深度学习的关系作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来蒙特卡罗方法和深度学习都是近年来在计算科学和人工智能领域取得重大突破的技术。蒙特卡罗方法是一种基于随机抽样的数值计算方法,广泛应用于物理、工程、金融等领域。深度学习则是一种基于人工神经网络的学习方法,在图像识别、语音识别、自然语言处理等领域取得了显
- KANN 是一个独立的轻量级 C 语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括 LSTM 和 GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归等
一、软件介绍文末提供程序和源码下载KANN是一个独立的轻量级C语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括LSTM和GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归、共享权重和多个输入/输出/成本的拓扑复杂神经网络。与TensorFlow等主流深度学习框架相比,KANN的可扩展性较低,但它的灵活性接近,代码库要小得多,并且仅依赖于标准C库。与
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- 人工神经网络:架构原理与技术解析
weixin_47233946
架构
##引言在深度学习和人工智能领域,人工神经网络(ArtificialNeuralNetwork,ANN)作为模拟人脑认知机制的核心技术,已在图像识别、自然语言处理和强化学习等领域实现了革命性突破。从AlphaGo击败人类顶尖棋手到ChatGPT的对话生成能力,ANN的进化持续推动技术边界的扩展。本文将深入剖析人工神经网络的核心原理、技术实现与发展趋势。##一、基础概念与数学模型###1.1生物启发
- 人工神经网络:单层神经网络(感知器)
一、神经网络介绍1、生物学起源与基本概念(1)生物神经网络启发人类大脑由约860亿个神经元组成,这些神经元通过突触相互连接,形成复杂网络。当外界刺激传入时,神经元会传递电信号并释放化学物质(神经递质),从而实现信息处理。人工神经网络正是模仿这一机制,通过数学模型构建“人工神经元”和“连接权重”。(2)人工神经网络的定义:由大量人工神经元(节点)相互连接构成的计算系统,通过调整节点间的连接权重来学习
- 深度学习——激活函数
笨小古
深度强化学习深度学习人工智能
深度学习——激活函数激活函数是人工是人工神经网络中一个关键的组成部分,它被设计用来引入非线性特性到神经网络模型中,使神经网络能够学习和逼近复杂的非线性映射关系。1.引入非线性能力没有激活函数的神经网络本质上只是线性变换的叠加,无论多少层也只能表示线性函数,能力有限。激活函数使网络可以逼近任意复杂函数(依据万能逼近定理)2.控制信息流动某些激活函数可以抑制部分神经元的输出(如ReLU),是模型更稀疏
- 第1天:认识RNN及RNN初步实验(预测下一个数字)
deflag
人工智能学习rnn人工智能深度学习
RNN(循环神经网络)是一种专门设计用来处理序列数据的人工神经网络。它的核心思想是能够“记住”之前处理过的信息,并将其用于当前的计算,这使得它非常适合处理具有时间顺序或上下文依赖关系的数据。核心概念:循环连接RNN与普通的前馈神经网络(如多层感知机)最根本的区别在于它引入了循环连接:输入序列:RNN接收一个序列作为输入,例如:一个句子(单词序列)一段语音(音频帧序列)股票价格(时间点上的价格序列)
- 动手学深度学习笔记1
a3040218
深度学习深度学习笔记人工智能
介绍定义:深度学习是一类基于人工神经网络的机器学习技术,通过构建具有多个层次的神经网络模型,让计算机自动从大量数据中学习特征和模式。它模拟人类大脑的神经元结构,通过大量神经元之间的相互连接和信息传递,实现对复杂数据的学习和理解。Tips:与传统机器学习的区别:传统机器学习通常需要人工手动设计特征,这依赖于领域专家的经验和知识,且设计的特征往往具有局限性。而深度学习能够自动从数据中学习到复杂的特征表
- AI 绘画工具原理揭秘:从文字到图像的魔法
JXY_AI
人工智能ai绘画
在当今数字化时代,AI绘画工具以其神奇的魔力,让人们只需输入简单的文字描述,就能瞬间生成精美的图像。这种从文字到图像的奇妙转换,仿佛为我们开启了一扇通往魔法世界的大门,极大地激发了创作者的灵感,降低了创作门槛,使艺术创作变得更加触手可及。今天,就让我们一同深入探索AI绘画工具背后的技术原理,揭开这层神秘的面纱。AI绘画的技术基石深度学习与神经网络AI绘画的核心技术之一是深度学习,它基于人工神经网络
- 基于simulink的神经网络控制策略的三相逆变器仿真
amy_mhd
神经网络人工智能深度学习
目录一、准备工作二、步骤详解1.启动Simulink并创建新模型2.构建三相逆变器基础模型3.设计神经网络控制器数据准备与预处理创建并训练神经网络4.集成神经网络控制器到Simulink模型5.增加示波器观察输出6.配置仿真参数7.运行仿真并分析结果示例代码片段神经网络控制(NeuralNetworkControl)是一种基于人工神经网络的智能控制方法,它能够通过学习系统的行为来实现对复杂非线性系
- 【深度学习】6. 卷积神经网络,CNN反向传播,感受野,池化变种,局部连接机制,可视化实例
pen-ai
深度学习机器学习深度学习cnn人工智能
卷积神经网络(ConvolutionalNeuralNetworks)一、卷积神经网络的历史发展Neocognitron(1980)由KunihikoFukushima提出,Neocognitron是最早模拟人类视觉皮层结构的人工神经网络架构。它具备层级结构与局部连接机制,可以实现位置不变性的图像识别,是现代CNN的雏形。LeNet-5(1998)YannLeCun等人提出了LeNet-5,这是第
- 一文搞懂神经网络:从原理到 Python 实战
-Student
神经网络python人工智能卷积神经网络机器学习深度学习大数据
一、神经网络的定义与分类1.1神经网络的基本概念人工神经网络(ArtificialNeuralNetwork,ANN)的设计灵感源于生物大脑中神经元的工作机制。在生物神经系统中,神经元是基本的信息处理单元,它通过树突接收来自其他神经元的信号,这些信号在细胞体中进行整合,当整合后的信号强度超过一定阈值时,神经元就会被激活,并通过轴突将信号传递给其他神经元。神经元之间通过突触相连,突触的强度决定了信号
- 简单神经网络(ANN)实现:从零开始构建第一个模型
赵青临的辉
深入人工智能:从基础到实战神经网络人工智能深度学习
本文将手把手带你用Python+Numpy实现一个最基础的人工神经网络(ArtificialNeuralNetwork,ANN)。不依赖任何深度学习框架,适合入门理解神经网络的本质。一、项目目标构建一个三层神经网络(输入层、隐藏层、输出层),用于解决一个简单的二分类任务,例如根据两个输入特征判断输出是0还是1。二、基本结构说明我们将构建如下结构的神经网络:复制编辑输入层(2个神经元)→隐藏层(4个
- 一文解析13大神经网络算法模型架构
攻城狮7号
AI前沿技术要闻深度学习神经网络人工智能机器学习
目录一、引言:神经网络的演进脉络二、基础架构:深度学习的基石2.1人工神经网络(ANN)2.2深度神经网络(DNN)三、专项任务架构:领域定制化突破3.1卷积神经网络(CNN)3.2循环神经网络(RNN)3.3图神经网络(GNN)四、生成模型:从数据到创造4.1生成对抗网络(GAN)4.2变分自编码器(VAE)4.3扩散模型(DiffusionModels)五、现代架构:大模型的核心引擎5.1Tr
- 深入解析BP神经网络:从理论到实践
语文乌托邦
本文还有配套的精品资源,点击获取简介:BP神经网络是一种通过反向传播算法实现权重更新的人工神经网络模型,广泛应用于多种任务。本文献深入探讨了BP神经网络的结构、前向传播、激活函数、误差函数、反向传播算法、梯度下降、学习率、权重初始化、过拟合与正则化、早停策略、批量与随机梯度下降、学习率衰减、动量法与Adam优化器,以及训练集、验证集与测试集等关键概念。通过这些基础知识,读者将能够理解并应用BP神经
- 神经网络的概念和基本用法
大数据技术派
概率论与数理统计神经网络人工智能深度学习
什么是人工神经网络,我的理解就是:举个不太恰当的例子,当你训练你的狗时,第一次给它一个橘子,跟它说这是橘子;下一次再给它橘子,看它还认不认识,如果不认识,继续告诉他,直到狗可以认出橘子为止。那么下次你就可以给它拿一个香蕉,问它这是不是橘子,如果它说不是,说明它已经被训练的差不多了。我们来看一下官方定义:神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函
- python画sigmoid函数_基于Python的sigmoid函数FPGA实现
weixin_39624360
基于Python的sigmoid函数FPGA实现刘毅飞【摘要】sigmoid函数是人工神经网络中通常采用的传递函数,采用基于Python的软硬件协同设计方法,在FPGA上实现了定点sigmoid函数。实验结果表明采用基于Python的软硬件协同设计方法,可以利用Python上大量的包和模块从而大幅度提高系统设计、仿真和校验的效率,并且能将软件算法快速有效地转换为硬件实现,在整个软硬件设计过程中仅采
- 基于全连接神经网络的minist数据集分类
ʚɞ 短腿欧尼
神经网络人工智能全连接神经网络minist数据集
1.构建全连接神经网络全连接神经网络介绍:全连接神经网络(FullyConnectedNeuralNetwork,FCNN)是一种经典的人工神经网络结构,它将每个神经元与前一层的所有神经元相连,形成一个密集的网络。FCNN广泛应用于各种机器学习任务,例如图像分类、语音识别和自然语言处理等。结构包含:输入层:接收输入数据,例如图像像素值、文本向量等。隐藏层:由多个神经元组成,每个神经元都与前一层的所
- 多层感知机神经网络与损失函数 笔记
无敌的六边形狗勾战士
神经网络笔记人工智能
1.算法背景使用算法模拟人脑进行智能运算的结构与模型被称为神经网络。人工神经网络简称神经网络,是一种模拟生物神经网络的算法结构与模型。人工神经元主要使用函数来模拟神经元对信息的处理过程。在神经网络中,神经元不是单个出现的,一个神经元的输入可以来源于外界,也可以来源于上一个神经元。2.算法原理2.1神经元神经网络的基本的单位是神经元,每个神经元都有输入并产生单个输出。这个输出可以发射到多个其他的神经
- 深度学习应用
胡萝卜不甜
机器学习深度学习人工智能机器学习
1.深度学习概述1.1定义与发展深度学习是机器学习的一个子领域,它基于人工神经网络的学习算法,通过模拟人脑的神经网络结构来处理数据和创建模式。深度学习的发展可以追溯到20世纪40年代,但直到21世纪初,随着计算能力的提升和大数据的可用性,深度学习才开始取得显著的进展。定义:深度学习模型由多层的神经网络构成,每一层都包含多个神经元,这些神经元能够学习数据的复杂特征。深度学习模型能够自动从原始数据中提
- 诺奖现场采访2024物理学得主Hinton:当前AI革命堪比工业革命,且将在智力上全面超越人类
AIBigModel
人工智能
当地时间昨天,2024年10月8日,瑞典皇家科学院宣布将本年度诺贝尔物理学奖授予两位被誉为'AI教父'的科学家:约翰·J·霍普菲尔德(JohnJ.Hopfield)和杰弗里·E·辛顿(GeoffreyE.Hinton)。该奖项旨在表彰他们在使用人工神经网络进行机器学习方面的基础性发现和发明。在现场,发言人通过手机连线采访了杰弗里·辛顿教授。辛顿教授对人工智能的未来发展前景表示乐观,他指出:'人工智
- 大模型训练、多模态数据处理与融合
百度_开发者中心
人工智能大模型自然语言处理
人工智能(AI)领域近年来取得了显著的进步,其中大模型训练和多模态数据处理技术发挥了至关重要的作用。大模型是指具有巨大参数量和计算能力的人工神经网络模型,而多模态数据处理则是指在一个系统或模型中同时处理多种类型的数据,如文本、图像、音频等。一、大模型训练随着硬件和算法的进步,如GPT(GenerativePre-trainedTransformer)系列模型和BERT(BidirectionalE
- 深度学习3——神经网络与反向传播
DUTBenjamin
深度学习深度学习神经网络人工智能
一、多层感知机1.1单层感知机1943年,麦卡洛克和皮兹提出MCP模型,开启了人工神经网络的大门。该模型模拟人的神经元反应过程,对输入信号进行线性加权、求和后,再通过非线性激活(阈值法)输出。其数学表达式为:y=f(∑i=1nwixi+b)y=f\left(\sum_{i=1}^{n}w_{i}x_{i}+b\right)y=f(i=1∑nwixi+b)其中,xix_ixi是输入信号,wiw_iw
- 多层感知机(MLP)——深度学习
搬砖的阿wei
人工智能算法机器学习python深度学习计算机视觉
1.感知机1.1什么是感知机感知机是一种最简单的人工神经网络模型,它模拟了生物神经元的工作原理,基本结构是单个神经元,接收多个输入信号,将每个输入乘以对应的权重,求和后加上偏置,再经过一个激活函数处理输出结果。数学模型可以表示为:,其中是输入值,是权重,是偏置,是激活函数,常见的激活函数如修正线性单元(Rectifiedlinearunit,ReLU)。1.2感知机的局限性感知机只能处理线性可分的
- 数学建模SOM神经网络聚类
AI Dog
数学建模数学建模聚类深度学习SOM神经网络人工智能
数学建模中的SOM神经网络聚类自组织映射(Self-OrganizingMap,SOM)是一种无监督的人工神经网络,用于对高维数据进行降维和聚类分析。SOM通过模拟神经元的自组织行为,能够有效地将输入数据映射到一个低维的网格空间,并且保留数据的拓扑结构。SOM广泛应用于数据挖掘、模式识别、图像处理等领域。1.SOM神经网络概述自组织映射(SOM)是由TeuvoKohonen在1980年代提出的一种
- 基于人工神经网络的生物信息软件_[2020 Vol.193] SDMtoolbox:一种基于python的景观遗传、生物地理和物种分布模型分析地理信息系统工具包...
weixin_39855796
基于人工神经网络的生物信息软件空间分析建模目的
SDMtoolbox:apython-basedGIStoolkitforlandscapegenetic,biogeographicandspeciesdistributionmodelanalysesSDMtoolbox:一种基于python的景观遗传、生物地理和物种分布模型分析地理信息系统工具包JasonL.Brown*†DepartmentofBiology,DukeUniversity,
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb