ensemble.AdaBoostClassifier : AdaBoost分类
ensemble.AdaBoostRegressor :Adaboost回归
ensemble.BaggingClassifier :装袋分类器
ensemble.BaggingRegressor :装袋回归器
ensemble.ExtraTreesClassifier :Extra-trees分类(超树,极端随机树)
ensemble.ExtraTreesRegressor : Extra-trees回归
ensemble.GradientBoostingClassifier : 梯度提升分类
ensemble.GradientBoostingRegressor :梯度提升回归
ensemble.IsolationForest :隔离森林
**ensemble.RandomForestClassifier :随机森林分类
ensemble.RandomForestRegressor : 随机森林回归**
ensemble.RandomTreesEmbedding :完全随机树的集成
ensemble.VotingClassifier :用于不合适估算器的软投票/多数规则分类
集成算法中,有一半以上都是树的集成模型,可以想见决策树在集成中必定是有很好的效果。在这堂课中,我们会以随机森林为例,慢慢为大家揭开集成算法的神秘面纱。
class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False,
n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None)
随机森林是非常具有代表性的Bagging集成算法,它的所有基评估器都是决策树,分类树组成的森林就叫做随机森林分类器,回归树所集成的森林就叫做随机森林回归器。这一节主要讲解RandomForestClassifier,随机森林分类器。
这是森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大,模型的效果往往越好。但是相应的,任何模型都有决策边界n_estimators达到一定的程度之后,随机森林的精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。
n_estimators的默认值在现有版本的sklearn中是10,但是在即将更新的0.22版本中,这个默认值会被修正为100。这个修正显示出了使用者的调参倾向:要更大的n_estimators。
%matplotlib inline
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine
wine = load_wine()
wine.data
wine.target
from sklearn.model_selection import train_test_split
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)
clf = DecisionTreeClassifier(random_state=0)
rfc = RandomForestClassifier(random_state=0)
clf = clf.fit(Xtrain,Ytrain)
rfc = rfc.fit(Xtrain,Ytrain)
score_c = clf.score(Xtest,Ytest)
score_r = rfc.score(Xtest,Ytest)
print("Single Tree:{}".format(score_c)
,"Random Forest:{}".format(score_r)
)
#目的是带大家复习一下交叉验证
#交叉验证:是数据集划分为n分,依次取每一份做测试集,每n-1份做训练集,多次训练模型以观测模型稳定性的方法
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
rfc = RandomForestClassifier(n_estimators=25)
rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10)
clf = DecisionTreeClassifier()
clf_s = cross_val_score(clf,wine.data,wine.target,cv=10)
plt.plot(range(1,11),rfc_s,label = "RandomForest")
plt.plot(range(1,11),clf_s,label = "Decision Tree")
plt.legend()
plt.show()
#====================一种更加有趣也更简单的写法===================#
"""
label = "RandomForest"
for model in [RandomForestClassifier(n_estimators=25),DecisionTreeClassifier()]:
score = cross_val_score(model,wine.data,wine.target,cv=10)
print("{}:".format(label)),print(score.mean())
plt.plot(range(1,11),score,label = label)
plt.legend()
label = "DecisionTree"
"""
rfc_l = []
clf_l = []
for i in range(10):
rfc = RandomForestClassifier(n_estimators=25)
rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()
rfc_l.append(rfc_s)
clf = DecisionTreeClassifier()
clf_s = cross_val_score(clf,wine.data,wine.target,cv=10).mean()
clf_l.append(clf_s)
plt.plot(range(1,11),rfc_l,label = "Random Forest")
plt.plot(range(1,11),clf_l,label = "Decision Tree")
plt.legend()
plt.show()
#是否有注意到,单个决策树的波动轨迹和随机森林一致?
#再次验证了我们之前提到的,单个决策树的准确率越高,随机森林的准确率也会越高
#####【TIME WARNING: 2mins 30 seconds】#####
superpa = []
for i in range(200):
rfc = RandomForestClassifier(n_estimators=i+1,n_jobs=-1)
rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()
superpa.append(rfc_s)
print(max(superpa),superpa.index(max(superpa)))
plt.figure(figsize=[20,5])
plt.plot(range(1,201),superpa)
plt.show()
随机森林的本质是一种装袋集成算法(bagging),装袋集成算法是对基评估器的预测结果进行平均或用多数表决原则来决定集成评估器的结果。在刚才的红酒例子中,我们建立了25棵树,对任何一个样本而言,平均或多数表决原则下,当且仅当有13棵以上的树判断错误的时候,随机森林才会判断错误。单独一棵决策树对红酒数据集的分类准确率在0.85上下浮动,假设一棵树判断错误的可能性为0.2(ε),那20棵树以上都判断错误的可能性是:
其中,i是判断错误的次数,也是判错的树的数量,ε是一棵树判断错误的概率,(1-ε)是判断正确的概率,共判对
25-i次。采用组合,是因为25棵树中,有任意i棵都判断错误。
import numpy as np
from scipy.special import comb
np.array([comb(25,i)*(0.2**i)*((1-0.2)**(25-i)) for i in range(13,26)]).sum()
可见,判断错误的几率非常小,这让随机森林在红酒数据集上的表现远远好于单棵决策树。
那现在就有一个问题了:我们说袋装法服从多数表决原则或对基分类器结果求平均,这即是说,我们默认森林中的每棵树应该是不同的,并且会返回不同的结果。设想一下,如果随机森林里所有的树的判断结果都一致(全判断对或全判断错),那随机森林无论应用何种集成原则来求结果,都应该无法比单棵决策树取得更好的效果才对。但我
们使用了一样的类DecisionTreeClassifier,一样的参数,一样的训练集和测试集,为什么随机森林里的众多树会有不同的判断结果?
问到这个问题,很多小伙伴可能就会想到了:sklearn中的分类树DecisionTreeClassifier自带随机性,所以随机森林中的树天生就都是不一样的。我们在讲解分类树时曾提到,决策树从最重要的特征中随机选择出一个特征来进行分枝,因此每次生成的决策树都不一样,这个功能由参数random_state控制。
随机森林中其实也有random_state,用法和分类树中相似,只不过在分类树中,一个random_state只控制生成一棵树,而随机森林中的random_state控制的是生成森林的模式,而非让一个森林中只有一棵树。
import numpy as np
from scipy.special import comb
np.array([comb(25,i)*(0.2**i)*((1-0.2)**(25-i)) for i in range(13,26)]).sum()
rfc = RandomForestClassifier(n_estimators=20,random_state=2)
rfc = rfc.fit(Xtrain, Ytrain)
#随机森林的重要属性之一:estimators,查看森林中树的状况
rfc.estimators_[0].random_state
for i in range(len(rfc.estimators_)):
print(rfc.estimators_[i].random_state)
要让基分类器尽量都不一样,一种很容易理解的方法是使用不同的训练集来进行训练,而袋装法正是通过有放回的随机抽样技术来形成不同的训练数据,bootstrap就是用来控制抽样技术的参数。
在一个含有n个样本的原始训练集中,我们进行随机采样,每次采样一个样本,并在抽取下一个样本之前将该样本放回原始训练集,也就是说下次采样时这个样本依然可能被采集到,这样采集n次,最终得到一个和原始训练集一样大的,n个样本组成的自助集。由于是随机采样,这样每次的自助集和原始数据集不同,和其他的采样集也是不同的。这样我们就可以自由创造取之不尽用之不竭,并且互不相同的自助集,用这些自助集来训练我们的基分类
器,我们的基分类器自然也就各不相同了。
bootstrap参数默认True,代表采用这种有放回的随机抽样技术。通常,这个参数不会被我们设置为False。
然而有放回抽样也会有自己的问题。由于是有放回,一些样本可能在同一个自助集中出现多次,而其他一些却可能被忽略,一般来说,自助集大约平均会包含63%的原始数据。因为每一个样本被抽到某个自助集中的概率为:
当n足够大时,这个概率收敛于1-(1/e),约等于0.632。因此,会有约37%的训练数据被浪费掉,没有参与建模,
这些数据被称为袋外数据(out of bag data,简写为oob)。除了我们最开始就划分好的测试集之外,这些数据也可以被用来作为集成算法的测试集。也就是说,在使用随机森林时,我们可以不划分测试集和训练集,只需要用袋外数据来测试我们的模型即可。当然,这也不是绝对的,当n和n_estimators都不够大的时候,很可能就没有数据掉落在袋外,自然也就无法使用oob数据来测试模型了。
如果希望用袋外数据来测试,则需要在实例化时就将oob_score这个参数调整为True,训练完毕之后,我们可以用随机森林的另一个重要属性:oob_score_来查看我们的在袋外数据上测试的结果:
#无需划分训练集和测试集
rfc = RandomForestClassifier(n_estimators=25,oob_score=True)
rfc = rfc.fit(wine.data,wine.target)
#重要属性oob_score_
rfc.oob_score_
至此,我们已经讲完了所有随机森林中的重要参数,为大家复习了一下决策树的参数,并通过n_estimators,random_state,boostrap和oob_score这四个参数帮助大家了解了袋装法的基本流程和重要概念。同时,我们还介绍了.estimators_ 和 .oob_score_ 这两个重要属性。除了这两个属性之外,作为树模型的集成算法,随机森林自然也有.feature_importances_这个属性。
随机森林的接口与决策树完全一致,因此依然有四个常用接口:apply, fit, predict和score。除此之外,还需要注
意随机森林的predict_proba接口,这个接口返回每个测试样本对应的被分到每一类标签的概率,标签有几个分类
就返回几个概率。如果是二分类问题,则predict_proba返回的数值大于0.5的,被分为1,小于0.5的,被分为0。
传统的随机森林是利用袋装法中的规则,平均或少数服从多数来决定集成的结果,而sklearn中的随机森林是平均每个样本对应的predict_proba返回的概率,得到一个平均概率,从而决定测试样本的分类。
rfc = RandomForestClassifier(n_estimators=25)
rfc = rfc.fit(Xtrain, Ytrain)
rfc.score(Xtest,Ytest)
rfc.feature_importances_
rfc.apply(Xtest)
rfc.predict(Xtest)
rfc.predict_proba(Xtest)
之前我们说过,在使用袋装法时要求基评估器要尽量独立。其实,袋装法还有另一个必要条件:基分类器的判断准确率至少要超过随机分类器,即时说,基分类器的判断准确率至少要超过50%。之前我们已经展示过随机森林的准
确率公式,基于这个公式,我们画出了基分类器的误差率ε和随机森林的误差率之间的图像。大家可以自己运行一下这段代码,看看图像呈什么样的分布。
#大家可以分别取尝试一下这些属性和接口
rfc = RandomForestClassifier(n_estimators=25)
rfc = rfc.fit(Xtrain, Ytrain)
rfc.score(Xtest,Ytest)
rfc.feature_importances_
rfc.apply(Xtest)
rfc.predict(Xtest)
rfc.predict_proba(Xtest)
import numpy as np
x = np.linspace(0,1,20)
y = []
for epsilon in np.linspace(0,1,20):
E = np.array([comb(25,i)*(epsilon**i)*((1-epsilon)**(25-i))
for i in range(13,26)]).sum()
y.append(E)
plt.plot(x,y,"o-",label="when estimators are different")
plt.plot(x,x,"--",color="red",label="if all estimators are same")
plt.xlabel("individual estimator's error")
plt.ylabel("RandomForest's error")
plt.legend()
plt.show()