吴恩达机器学习第三次作业:多类别区分与神经网络part1

这是习题和答案的下载地址,全网最便宜,只要一积分哦~~~

https://download.csdn.net/download/wukongakk/10602657

Part 1

0.综述

     识别手写数字。(最后有小彩蛋~~)

1.脚本

%% Machine Learning Online Class - Exercise 3 | Part 1: One-vs-all

%  Instructions
%  ------------
% 
%  This file contains code that helps you get started on the
%  linear exercise. You will need to complete the following functions 
%  in this exericse:
%
%     lrCostFunction.m (logistic regression cost function)
%     oneVsAll.m
%     predictOneVsAll.m
%     predict.m
%
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%

%% Initialization
clear ; close all; clc

%% Setup the parameters you will use for this part of the exercise
input_layer_size  = 400;  % 20x20 Input Images of Digits
num_labels = 10;          % 10 labels, from 1 to 10   
                          % (note that we have mapped "0" to label 10)

%% =========== Part 1: Loading and Visualizing Data =============
%  We start the exercise by first loading and visualizing the dataset. 
%  You will be working with a dataset that contains handwritten digits.
%

% Load Training Data
fprintf('Loading and Visualizing Data ...\n')

load('ex3data1.mat'); % training data stored in arrays X, y
m = size(X, 1);       % r=size(A,1)该语句返回的是矩阵A的行数, c=size(A,2) 该语句返回的是矩阵A的列数
 

% Randomly select 100 data points to display
rand_indices = randperm(m);     % change the order -jin  randperm(m) 将1到m的m个数打乱顺序重新排列
sel = X(rand_indices(1:100), :);   %用rand_indices的前一百个元素代表的行向量组成新的矩阵


displayData(sel);


fprintf('Program paused. Press enter to continue.\n');
pause;

%% ============ Part 2: Vectorize Logistic Regression ============
%  In this part of the exercise, you will reuse your logistic regression
%  code from the last exercise. You task here is to make sure that your
%  regularized logistic regression implementation is vectorized. After
%  that, you will implement one-vs-all classification for the handwritten
%  digit dataset.
%

fprintf('\nTraining One-vs-All Logistic Regression...\n')

lambda = 0.1;

[all_theta] = oneVsAll(X, y, num_labels, lambda);

fprintf('Program paused. Press enter to continue.\n');
pause;


%% ================ Part 3: Predict for One-Vs-All ================
%  After ...
pred = predictOneVsAll(all_theta, X);

fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
pic = imread('C:\Users\lenovo\Desktop\667.jpg');
pic = rgb2gray(pic);
pic = imresize(pic, [20, 20]);
pic = im2double(pic);
T = pic(:);
T = T';
pred = predictOneVsAll(all_theta, T);
fprintf('\nthis is answer\n')
disp(pred);


2.Loading and Visualizing Data

function [h, display_array] = displayData(X, example_width)
%DISPLAYDATA Display 2D data in a nice grid
%   [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
%   stored in X in a nice grid. It returns the figure handle h and the 
%   displayed array if requested.

% Set example_width automatically if not passed in
if ~exist('example_width', 'var') || isempty(example_width) 
	example_width = round(sqrt(size(X, 2)));
end

% Gray Image
colormap(gray);

% Compute rows, cols
[m n] = size(X);
example_height = (n / example_width);

% Compute number of items to display
display_rows = floor(sqrt(m));
display_cols = ceil(m / display_rows);

% Between images padding
pad = 1;

% Setup blank display
display_array = - ones(pad + display_rows * (example_height + pad), ...
                       pad + display_cols * (example_width + pad));

% Copy each example into a patch on the display array
curr_ex = 1;
for j = 1:display_rows
	for i = 1:display_cols
		if curr_ex > m, 
			break; 
		end
		% Copy the patch
		
		% Get the max value of the patch
		max_val = max(abs(X(curr_ex, :)));
		display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...      %pad就是为图像添加边界
		              pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...      
						reshape(X(curr_ex, :), example_height, example_width) / max_val;    %提取出X的第curr_ex行,这是一个1*400的矩阵,代表一个20*20的图像
		curr_ex = curr_ex + 1;                                                              % 除max_val是归一化
	end
	if curr_ex > m, 
		break; 
	end
end

% Display Image
disp(display_array);
fprintf('\n123456789\n');
h = imagesc(display_array, [-1 1]);

% Do not show axis
axis image off

drawnow;

end

3.Vectorize Logistic Regression

function [all_theta] = oneVsAll(X, y, num_labels, lambda)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta 
%corresponds to the classifier for label i
%   [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
%   logisitc regression classifiers and returns each of these classifiers
%   in a matrix all_theta, where the i-th row of all_theta corresponds 
%   to the classifier for label i

% Some useful variables
m = size(X, 1);             %  图像训练集矩阵的行数
n = size(X, 2);             %  图像训练集矩阵的列数

% You need to return the following variables correctly 
all_theta = zeros(num_labels, n + 1);

% Add ones to the X data matrix
X = [ones(m, 1) X];

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
%               logistic regression classifiers with regularization
%               parameter lambda. 
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell users 
%       whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
%       function. It is okay to use a for-loop (for c = 1:num_labels) to
%       loop over the different classes.
%
%       fmincg works similarly to fminunc, but is more efficient when we
%       are dealing with large number of parameters.
%
% Example Code for fmincg:
%
%     % Set Initial theta
%     initial_theta = zeros(n + 1, 1);
%     
%     % Set options for fminunc
%     options = optimset('GradObj', 'on', 'MaxIter', 50);
% 
%     % Run fmincg to obtain the optimal theta
%     % This function will return theta and the cost 
%     [theta] = ...
%         fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
%                 initial_theta, options);
%

options = optimset('GradObj', 'on', 'MaxIter', 50);    % 这行的意思就是,在fmincg函数中,使用自定义的代价函数,即lrCostFunction,并定义了最大迭代次数为50

initial_theta = zeros(n + 1, 1);

for c = 1:num_labels

all_theta(c,:) = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...     %  把fmincg函数的返回值赋给all_theta矩阵的第c行
            initial_theta, options);
end

% =========================================================================

end

注意irCostFunction(t, x, (y == c), lambda)的传参,y == c是一个矩阵,这个矩阵的第c个元素为1,其余矩阵为0。

再来看我们的老朋友,lrCostFunction函数,加了正则化 ,sigmoid(z) = 1.0 / (1.0 + exp(-z))

function [J, grad] = lrCostFunction(theta, X, y, lambda)
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with 
%regularization
%   J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
%   theta as the parameter for regularized logistic regression and the
%   gradient of the cost w.r.t. to the parameters. 

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
%               You should set J to the cost.
%               Compute the partial derivatives and set grad to the partial
%               derivatives of the cost w.r.t. each parameter in theta
%
% Hint: The computation of the cost function and gradients can be
%       efficiently vectorized. For example, consider the computation
%
%           sigmoid(X * theta)
%
%       Each row of the resulting matrix will contain the value of the
%       prediction for that example. You can make use of this to vectorize
%       the cost function and gradient computations. 
%
% Hint: When computing the gradient of the regularized cost function, 
%       there're many possible vectorized solutions, but one solution
%       looks like:
%           grad = (unregularized gradient for logistic regression)
%           temp = theta; 
%           temp(1) = 0;   % because we don't add anything for j = 0  
%           grad = grad + YOUR_CODE_HERE (using the temp variable)
%

temp=[0;theta(2:end)];    % 先把theta(1)拿掉,不参与正则化
J= -1 * sum( y .* log( sigmoid(X*theta) ) + (1 - y ) .* log( (1 - sigmoid(X*theta)) ) ) / m  + lambda/(2*m) * temp' * temp ;
grad = ( X' * (sigmoid(X*theta) - y ) )/ m + lambda/m * temp ;


% =============================================================

grad = grad(:);

end

4.Predict for One-Vs-All

训练好了模型,最后就是预测了

function p = predictOneVsAll(all_theta, X)
%PREDICT Predict the label for a trained one-vs-all classifier. The labels 
%are in the range 1..K, where K = size(all_theta, 1). 
%  p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
%  for each example in the matrix X. Note that X contains the examples in
%  rows. all_theta is a matrix where the i-th row is a trained logistic
%  regression theta vector for the i-th class. You should set p to a vector
%  of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
%  for 4 examples) 

m = size(X, 1);
num_labels = size(all_theta, 1);

% You need to return the following variables correctly 
p = zeros(size(X, 1), 1);

% Add ones to the X data matrix
X = [ones(m, 1) X];

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
%               your learned logistic regression parameters (one-vs-all).
%               You should set p to a vector of predictions (from 1 to
%               num_labels).
%
% Hint: This code can be done all vectorized using the max function.
%       In particular, the max function can also return the index of the 
%       max element, for more information see 'help max'. If your examples 
%       are in rows, then, you can use max(A, [], 2) to obtain the max 
%       for each row.
%       


[a,p] = max(sigmoid( X * all_theta'),[],2) ;    % 返回每行最大值的索引位置,也就是预测的数字






% =========================================================================


end

5.利用此模型识别自己的手写字体

     1.首先是调出训练集的数据,看看训练集的数据大概是什么样的。

a = X(1000,:);   %我们知道图像的信息存在X矩阵中(size(X) = (5000*400)),所以随意从X矩阵中取几行元素
a = reshape(a(1:400), 20, 20);  %把提取出的一行元素还原为20*20的矩阵,这代表一个图像
imagesc(a);     %显示图像
disp(a);        %显示矩阵

       观察矩阵,由于matlab用double型存储图片,所以我们大概可以发现这幅图片的底色为黑(矩阵中元素为0),数字部分为           白 (矩阵中元素为1) ,为了更清楚的看到这一点,我们用c++对这个矩阵进行一些操作,把所有大于0.5的元素置为1,把           所有小于0.5的原素置为0。

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define inf 0x3f3f3f3f
#define LL long long 
#define maxn 1000005
#define For(i, a, b) for(int i = a; i <= b; i++)
#define Forx(i, b, a) for(int i = b; i >= a; i--)
#define Testin freopen("ztest.txt", "r", stdin) 
#define Ansout freopen("zans.txt","w", stdout)
using namespace std;

int main(){
	Testin;
	Ansout;
	double a[100][100];
	For(i, 1, 20)
	For(j, 1, 12){
		scanf("%lf", &a[i][j]);
		if(a[i][j] > 0.5)	a[i][j] = 1;
		else	a[i][j] = 0;
	}
	For(i, 1, 20)
	For(j, 13, 20){
		scanf("%lf", &a[i][j]);
		if(a[i][j] > 0.5)	a[i][j] = 1;
		else	a[i][j] = 0;
	}
	For(i, 1, 20){
		For(j, 1, 20)
			printf("%.2lf ", a[i][j]);
		printf(";\n");
	}
	return 0;
}

          得到的矩阵式这个样子的,可以看出这是个‘6’。

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;

 

       这时就可以清楚的发现矩阵中为1的元素组成了待识别的数字。

     2.了解了这一点后,我们就可以自己制作测试数据了,打开ps,把图片底色设为0,再把画笔颜色设为255,把像素调到50*50以下,就           可以写数字了,就是下图的效果。

     3.把脚本的最后部分改一下

%% ================ Part 3: Predict for One-Vs-All ================
%  After ...
pred = predictOneVsAll(all_theta, X);

fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);

% 开始识别自己的手写字体

pic = imread('C:\Users\lenovo\Desktop\667.jpg');   %读入图片
pic = rgb2gray(pic);                               %要把图片转为2维的灰度图。
pic = imresize(pic, [20, 20]);                     %压缩图片像素到20*20
pic = im2double(pic);                              %由于matlab中用double型存图,所以把图片转化为double型
T = pic(:);                                        %把20*20的矩阵展开为400*1的列向量
T = T';                                            转置为1*400的行向量,进行识别
pred = predictOneVsAll(all_theta, T);
fprintf('\nthis is answer\n')
disp(pred);

 

 

 

 

你可能感兴趣的:(机器学习)