量化投资学习必读书目(六)——《Python金融大数据分析》

量化投资学习必读书目(六)——《Python金融大数据分析》_第1张图片

内容介绍

Python凭借其简单、易读、可扩展性以及拥有巨大而活跃的科学计算社区,在需要分析、处理大量数据的金融行业得到了广泛而迅速的应用,并且成为该行业开发核心应用的首选编程语言。《Python金融大数据分析》提供了使用Python进行数据分析,以及开发相关应用程序的技巧和工具。

《Python金融大数据分析》总计分为3部分,共19章,第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了金融分析和应用程序开发中最重要的Python库、技术和方法,其内容涵盖了Python的数据类型和结构、用matplotlib进行数据可视化、金融时间序列数据处理、高性能输入/输出操作、高性能的Python技术和库、金融学中需要的多种数学工具、随机数生成和随机过程模拟、Python统计学应用、Python和Excel的集成、Python面向对象编程和GUI的开发、Python与Web技术的集成,以及基于Web应用和Web服务的开发;第3部分关注的是蒙特卡洛模拟期权与衍生品定价实际应用的开发工作,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值、波动率期权等知识。

作者简介

Yves Hilpsch是Python Quants(德国)股份有限公司的创始人和任事股东,也是Python Quants(纽约)有限责任公司的共同创办人。该集团提供基于Python的金融和衍生品分析软件(参见http://pythonquants.com,http://quant-platfrom.com和http/dx-analytics.com),以及和Python及金融相关的咨询、开发和培训服务。

Yves还是Derivatives Analytics with Python(Wiley Finance,2015)的作者。作为获得数理金融学博士学位的商业管理专业研究生,他在萨尔州大学讲授计算金融学中的数值化方法课程。

适用人群

《Python金融大数据分析》,唯一一本详细讲解使用Python分析处理金融大数据的专业图书;金融应用开发领域从业人员必读。

适合对使用Python进行大数据分析、处理感兴趣的金融行业开发人员阅读。

豆瓣评分:7.6分
量化投资学习必读书目(六)——《Python金融大数据分析》_第2张图片

量化投资学习必读书目(六)——《Python金融大数据分析》_第3张图片
量化投资学习必读书目(六)——《Python金融大数据分析》_第4张图片

你可能感兴趣的:(量化投资学习必读书目(六)——《Python金融大数据分析》)