python之anaconda

Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。 [1]  因为包含了大量的科学包,Anaconda 的下载文件比较大(约 531 MB),如果只需要某些包,或者需要节省带宽或存储空间,也可以使用Miniconda这个较小的发行版(仅包含conda和 Python)

官网下载:https://www.anaconda.com/download/

按照安装程序提示一步步安装就好了, 安装完成之后会多几个应用

  • Anaconda Navigtor :用于管理工具包和环境的图形用户界面,后续涉及的众多管理命令也可以在 Navigator 中手工实现。
  • Jupyter notebook :基于web的交互式计算环境,可以编辑易于人们阅读的文档,用于展示数据分析的过程。
  • qtconsole :一个可执行 IPython 的仿终端图形界面程序,相比 Python Shell 界面,qtconsole 可以直接显示代码生成的图形,实现多行代码输入执行,以及内置许多有用的功能和函数。
  • spyder :一个使用Python语言、跨平台的、科学运算集成开发环境。

暂时先不用管, 了解一下就行了

配置环境变量

如果是windows的话需要去 控制面板\系统和安全\系统\高级系统设置\环境变量\用户变量\PATH 中添加 anaconda的安装目录的Scripts文件夹, 比如我的路径是D:\Software\Anaconda\Scripts, 看个人安装路径不同需要自己调整.

之后就可以打开命令行(最好用管理员模式打开) 输入 conda --version

如果输出conda 4.4.11之类的就说明环境变量设置成功了.

为了避免可能发生的错误, 我们在命令行输入conda upgrade --all 先把所有工具包进行升级

管理虚拟环境

接下来我们就可以用anaconda来创建我们一个个独立的python环境了.接下来的例子都是在命令行操作的,请打开你的命令行吧.

activate

activate 能将我们引入anaconda设定的虚拟环境中, 如果你后面什么参数都不加那么会进入anaconda自带的base环境,

你可以输入python试试, 这样会进入base环境的python解释器, 如果你把原来环境中的python环境去除掉会更能体会到, 这个时候在命令行中使用的已经不是你原来的python而是base环境下的python.而命令行前面也会多一个(base) 说明当前我们处于的是base环境下.

activate

创建自己的虚拟环境

我们当然不满足一个base环境, 我们应该为自己的程序安装单独的虚拟环境.

创建一个名称为learn的虚拟环境并指定python版本为3(这里conda会自动找3中最新的版本下载)

conda create -n learn python=3

image.png

于是我们就有了一个learn的虚拟环境, 接下来我们切换到这个环境, 一样还是用activae命令 后面加上要切换的环境名称

切换环境

activate learn

如果忘记了名称我们可以先用

conda env list

去查看所有的环境

现在的learn环境除了python自带的一些官方包之外是没有其他包的, 一个比较干净的环境我们可以试试

先输入python打开python解释器然后输入

>>> import requests

会报错找不到requests包, 很正常.接下来我们就要演示如何去安装requests包

exit()

退出python解释器

安装第三方包

输入

conda install requests

或者

pip install requests

来安装requests包.

安装完成之后我们再输入python进入解释器并import requests包, 这次一定就是成功的了.

卸载第三方包

那么怎么卸载一个包呢

conda remove requests

或者

pip uninstall requests

就行啦.

查看环境包信息

要查看当前环境中所有安装了的包可以用

conda list 

导入导出环境

如果想要导出当前环境的包信息可以用

conda env export > environment.yaml

将包信息存入yaml文件中.

当需要重新创建一个相同的虚拟环境时可以用

conda env create -f environment.yaml

其实命令很简单对不对, 我把一些常用的在下面给出来, 相信自己多打两次就能记住

activate // 切换到base环境

activate learn // 切换到learn环境

conda create -n learn python=3 // 创建一个名为learn的环境并指定python版本为3(的最新版本)

conda env list // 列出conda管理的所有环境

conda list // 列出当前环境的所有包

conda install requests 安装requests包

conda remove requests 卸载requets包

conda remove -n learn --all // 删除learn环境及下属所有包

conda update requests 更新requests包

conda env export > environment.yaml // 导出当前环境的包信息

conda env create -f environment.yaml // 用配置文件创建新的虚拟环境

深入一下

或许你会觉得奇怪为啥anaconda能做这些事, 他的原理到底是什么, 我们来看看anaconda的安装目录

image.png

这里只截取了一部分, 但是我们和本文章最开头的python环境目录比较一下, 可以发现其实十分的相似, 其实这里就是base环境. 里面有着一个基本的python解释器, lLib里面也有base环境下的各种包文件.

那我们自己创建的环境去哪了呢, 我们可以看见一个envs, 这里就是我们自己创建的各种虚拟环境的入口, 点进去看看

image.png

可以发现我们之前创建的learn目录就在下面, 再点进去

image.png

这不就是一个标准的python环境目录吗?


这么一看, anaconda所谓的创建虚拟环境其实就是安装了一个真实的python环境, 只不过我们可以通过activate,conda等命令去随意的切换我们当前的python环境, 用不同版本的解释器和不同的包环境去运行python脚本.

与pycharm连接

在工作环境中我们会集成开发环境去编码, 这里推荐JB公司的pycharm, 而pycharm也能很方便的和anaconda的虚拟环境结合

Setting => Project => Project Interpreter 里面修改 Project Interpreter , 点击齿轮标志再点击Add Local为你某个环境的python.exe解释器就行了

image.png

比如你要在learn环境中编写程序, 那么就修改为D:\Software\Anaconda\envs\learn, 可以看到这时候下面的依赖包也变成了learn环境中的包了.接下来我们就可以在pycharm中愉快的编码了.

image.png

结语



作者:AC手环
链接:https://www.jianshu.com/p/eaee1fadc1e9
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

你可能感兴趣的:(python)