用faster-rcnn训练自己的数据集(VOC2007格式,python版)

用faster-rcnn训练自己的数据集(VOC2007格式,python版)

一. 配置caffe环境

ubunt16.04下caffe环境安装

二. 下载,编译及测试py-faster-rcnn源码

(一)下载源码

github链接

或者执行 git clone –recursive https://github.com/rbgirshick/py-faster-rcnn.git

注意加上–recursive关键字

(二)编译源码

编译过程中可能会出现缺失一些python模块,按提示安装

(1)编译Cython模块

cd $FRCN_ROOT/lib 
make

(2)修改Markfile配置

参考ubunt16.04下caffe环境安装
中修改Makefile.config

(3)编译python接口

cd $FRCN_ROOT/caffe-fast-rcnn
make -j8  多核编译,时间较长
make pycaffe

(4)下载训练好的VGG16和ZF模型

cd $FRCN_ROOT
./data/scripts/fetch_faster_rcnn_models.sh

时间太长的话可以考虑找网上别人分享的资源

(三)测试源码

cd $FRCN_ROOT
./tool/demo.py

三. 使用faster-rcnn训练自己的数据集

(一)下载预训练参数及模型

cd $FRCN_ROOT
./data/scripts/fetch_imagenet_models.sh
./data/scripts/fetch_selective_search_data.sh

(二)制作数据集

制作数据集(VOC2007格式)

将制作好的VOC2007文件夹放置在data/VOCdevkit2007文件夹下,没有则新建VOCdevkit2007文件夹

(三)修改配置文件

(1)修改py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt和stage2_fast_rcnn_train.pt 两个文件

备注:3处修改及其附近的代码

name: "ZF"
layer {
  name: 'data'
  type: 'Python'
 top: 'data'
top: 'rois'
top: 'labels'
 top: 'bbox_targets'
 top: 'bbox_inside_weights'
top: 'bbox_outside_weights'
python_param {
  module: 'roi_data_layer.layer'
  layer: 'RoIDataLayer'
  param_str: "'num_classes': 2" #按训练集类别改,该值为类别数+1
}
}

layer {
 name: "cls_score"
 type: "InnerProduct"
 bottom: "fc7"
 top: "cls_score"
 param { lr_mult: 1.0 }
 param { lr_mult: 2.0 }
inner_product_param {
    num_output: 2 #按训练集类别改,该值为类别数+1
 weight_filler {
   type: "gaussian"
   std: 0.01
 }
 bias_filler {
    type: "constant"
   value: 0
  }
 }
}

layer {
  name: "bbox_pred"
 type: "InnerProduct"
 bottom: "fc7"
top: "bbox_pred"
 param { lr_mult: 1.0 }
 param { lr_mult: 2.0 }
 inner_product_param {
   num_output: 8 #按训练集类别改,该值为(类别数+1)*4
   weight_filler {
     type: "gaussian"
      std: 0.001
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

(2)修改py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_train.pt和stage2_rpn_train.pt 两个文件

备注:1处修改及其附近的代码

layer {
  name: 'input-data'
  type: 'Python'
  top: 'data'
  top: 'im_info'
  top: 'gt_boxes'
  python_param {
    module: 'roi_data_layer.layer'
    layer: 'RoIDataLayer'
    param_str: "'num_classes': 2" #按训练集类别改,该值为类别数+1
  }
}

(3)修改py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/faster_rcnn_test.pt文件

备注:2处修改及其附近的代码

layer {
  name: "cls_score"
  type: "InnerProduct"
  bottom: "fc7"
  top: "cls_score"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  inner_product_param {
    num_output: 2 #按训练集类别改,该值为类别数+1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

layer {
  name: "bbox_pred"
  type: "InnerProduct"
  bottom: "fc7"
  top: "bbox_pred"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  inner_product_param {
    num_output: 8 #按训练集类别改,该值为(类别数+1)*4
    weight_filler {
      type: "gaussian"
      std: 0.001
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

(4)修改py-faster-rcnn/lib/datasets/pascal_voc.py

self._classes = ('__background__', # always index 0
                         '你的标签1','你的标签2',你的标签3','你的标签4')

注:如果只是在原始检测的20种类别:'aeroplane', 'bicycle', 'bird', 'boat','bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse','motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor'中检测单一类别,可参考修改下面的代码:


def _load_image_set_index(self):
        """
        Load the indexes listed in this dataset's image set file.
        """
        # Example path to image set file:
        # self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt
        image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main',
                                      self._image_set + '.txt')
        assert os.path.exists(image_set_file), \
                'Path does not exist: {}'.format(image_set_file)
        with open(image_set_file) as f:
            image_index = [x.strip() for x in f.readlines()]

注:如果需要在原始的20类别只检测车辆的话才需要修改这部分代码.
        # only load index with cars obj
        new_image_index = []
        for index in image_index:
            filename = os.path.join(self._data_path, 'Annotations', index + '.xml')
            tree = ET.parse(filename)
            objs = tree.findall('object')
            num_objs = 0
            for ix, obj in enumerate(objs):
                curr_name = obj.find('name').text.lower().strip()
                if curr_name == 'car':
                    num_objs += 1
                    break
            if num_objs > 0:
                new_image_index.append(index)
        return new_image_index

def _load_pascal_annotation(self, index):
        """
        Load image and bounding boxes info from XML file in the PASCAL VOC
        format.
        """
        filename = os.path.join(self._data_path, 'Annotations', index + '.xml')
        tree = ET.parse(filename)
        objs = tree.findall('object')
        if not self.config['use_diff']:
            # Exclude the samples labeled as difficult
            non_diff_objs = [
                obj for obj in objs if int(obj.find('difficult').text) == 0]
            # if len(non_diff_objs) != len(objs):
            #     print 'Removed {} difficult objects'.format(
            #         len(objs) - len(non_diff_objs))
            objs = non_diff_objs

注:如果需要在原始的20类别只检测车辆的话才需要修改这部分代码.
        # change num objs , only read car
        # num_objs = len(objs)

        num_objs = 0
        for ix, obj in enumerate(objs):
            curr_name = obj.find('name').text.lower().strip()
            if curr_name == 'car':
                num_objs += 1

        boxes = np.zeros((num_objs, 4), dtype=np.uint16)
        gt_classes = np.zeros((num_objs), dtype=np.int32)
        overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
        # "Seg" area for pascal is just the box area
        seg_areas = np.zeros((num_objs), dtype=np.float32)

#注:如果需要在原始的20类别只检测车辆的话才需要修改这部分代码
# Load object bounding boxes into a data    frame.
        tmp_ix = 0
        for ix, obj in enumerate(objs):
            bbox = obj.find('bndbox')
            # Make pixel indexes 0-based
            x1 = float(bbox.find('xmin').text) - 1
            y1 = float(bbox.find('ymin').text) - 1
            x2 = float(bbox.find('xmax').text) - 1
            y2 = float(bbox.find('ymax').text) - 1
            curr_name = obj.find('name').text.lower().strip()
            if curr_name != 'car':
                continue
            cls = self._class_to_ind[curr_name]
            boxes[tmp_ix, :] = [x1, y1, x2, y2]
            gt_classes[tmp_ix] = cls
            overlaps[tmp_ix, cls] = 1.0
            seg_areas[tmp_ix] = (x2 - x1 + 1) * (y2 - y1 + 1)

            tmp_ix += 1

        overlaps = scipy.sparse.csr_matrix(overlaps)

        return {'boxes' : boxes,
                'gt_classes': gt_classes,
                'gt_overlaps' : overlaps,
                'flipped' : False,
                'seg_areas' : seg_areas}

(4)py-faster-rcnn/lib/datasets/imdb.py修改

def append_flipped_images(self):
        num_images = self.num_images
        widths = [PIL.Image.open(self.image_path_at(i)).size[0]
                  for i in xrange(num_images)]
        for i in xrange(num_images):
            boxes = self.roidb[i]['boxes'].copy()
            oldx1 = boxes[:, 0].copy()
            oldx2 = boxes[:, 2].copy()
            boxes[:, 0] = widths[i] - oldx2 - 1
            boxes[:, 2] = widths[i] - oldx1 - 1

            for b in range(len(boxes)):
                if boxes[b][2] < boxes[b][0]:
                   boxes[b][0] = 0

            assert (boxes[:, 2] >= boxes[:, 0]).all()

(5)py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py修改迭代次数(建议修改)

max_iters=[8000,4000,8000,4000]
建议:第一次训练使用较低的迭代次数,先确保能正常训练,如max_iters=[8,4,8,4]

训练分别为4个阶段(rpn第1阶段,fast rcnn第1阶段,rpn第2阶段,fast rcnn第2阶段)的迭代次数。可改成你希望的迭代次数。
如果改了这些数值,最好把py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt里对应的solver文件(有4个)也修改,stepsize小于上面修改的数值,stepsize的意义是经过stepsize次的迭代后降低一次学习率(非必要修改)。

(6)删除缓存文件(每次修改配置文件后训练都要做)

删除py-faster-rcnn文件夹下所有的.pyc文件及data文件夹下的cache文件夹,
data/VOCdekit2007下的annotations_cache文件夹(最近一次成功训练的
annotation和当前annotation一样的话这部分可以不删,否则可以正常训练,
但是最后评价模型会出错)

(四)开始训练

cd $FRCN_ROOT
./experiments/scripts/faster_rcnn_alt_opt.sh 0 ZF pascal_voc

成功训练后在py-faster-rcnn/output/faster_rcnn_alt_opt/voc_2007_trainval文件夹下
会有以final.caffemodel结尾的模型文件,一般为ZF_faster_rcnn_final.caffemodel

成功训练后会有一次模型性能的评估测试,成功的话会有MAP指标和平均MAP指标的输出,类似下文,
训练日志文件保存在experiments/logs文件夹下.

Evaluating detections
Writing car VOC results file
VOC07 metric? Yes
AP for car = 0.0090
Mean AP = 0.0090
~~~~~~~~
Results:
0.009
0.009
~~~~~~~~

--------------------------------------------------------------
Results computed with the **unofficial** Python eval code.
Results should be very close to the official MATLAB eval code.
Recompute with `./tools/reval.py --matlab ...` for your paper.
-- Thanks, The Management
--------------------------------------------------------------

real    1m43.822s
user    1m25.764s
sys 0m15.516s

(五)测试训练结果

(1)修改py-faster-rcnn\tools\demo.py

CLASSES = ('__background__',
         '你的标签1','你的标签2',你的标签3','你的标签4')

NETS = {'vgg16': ('VGG16',
                  'VGG16_faster_rcnn_final.caffemodel'),
        'zf': ('ZF',
                  'ZF_faster_rcnn_final.caffemodel')}

im_names = os.listdir(os.path.join(cfg.DATA_DIR, 'demo'))  

(2)放置模型及测试图片

将训练得到的py-faster-rcnn\output\faster_rcnn_alt_opt\***_trainval中
ZF的final.caffemodel拷贝至py-faster-rcnn\data\faster_rcnn_models

测试图片放在py-faster-rcnn\data\demo(与上面demo.py设置路径有关,可修改)

(3)进行测试

cd $FRCN_ROOT
./tool/demo.py

四. 曾出现过的bug及当时的解决方法

(1) 训练时出现KeyError:’max_overlaps’ ,解决方法:删除data文件夹下的cache文件夹

(2) 训练结束后测试时出现类似

File "/home/hyzhan/py-faster-rcnn/tools/../lib/datasets/voc_eval.py", line 126, in voc_eval
    R = [obj for obj in recs[imagename] if obj['name'] == classname]
KeyError: '000002'

解决方法: 删除data/VOCdekit2007下的annotations_cache文件夹

(3) caffe-fast-rcnn编译时出现找不到nvcc命令的情况,解决方法:

export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH

将cuda安装路径添加到环境变量中

(4) caffe-fast-rcnn编译时出现类似找不到opencv命令的情况,解决方法,添加环境变量:

export LD_LIBRARY_PATH=/home/hyzhan/software/opencv3/lib:$LD_LIBRARY_PATH

(5) 训练的时候执行”./experiments/scripts/faster_rcnn_alt_opt.sh 0 ZF pascal_voc”语句进行训练会出现找不到faster_rcnn_alt_opt.sh文件的情况,解决方法:重新手打命令

(6) 测试之前需要修改tool文件夹下的demo或者mydemo里面的class类别,不然会显示上次训练的类别

你可能感兴趣的:(深度学习-目标检测)