POJ——3070Fibonacci(矩阵快速幂)

Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12329   Accepted: 8748

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

 

看了很多关于矩阵快速幂的题解,感觉矩阵快速幂得到的是一个含有多个项的矩阵,而答案只是其中一项,而且之还需要特判指数。入门的矩阵快速幂题。感受一下再写其它的题目。拿这题为例。题目中给出的项从0开始,F0=0,F1=1,F2=1,F3=2。。就是一个斐波那契的数列。由于用矩阵,那至少要两项来组成矩阵,根据他的递推公式。可以得到[Fn,Fn-1]=[1*Fn-1+1*Fn-2,1*Fn-1+0*Fn-2]

代码:

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
struct mat 
{
	LL m[2][2];
	mat(){memset(m,0,sizeof(m));}
};
mat cheng(mat a,mat b)
{
	mat c;
	for (int i=0 ;i<2; i++)
	{
		for (int j=0; j<2; j++)
		{
			for (int k=0; k<2; k++)
			{
				c.m[i][j]+=(a.m[i][k]*b.m[k][j])%10000;
			}			
		}
	}
	return c;
}
mat zxc(mat a,LL b)
{
	mat c;
	c.m[0][0]=c.m[1][1]=1;
	while (b!=0)
	{
		if(b&1)
			c=cheng(c,a);
		a=cheng(a,a);
		b>>=1;
	}
	return c;
}
int main(void)
{
	LL n;
	while (cin>>n&&n!=-1)
	{
		mat one;
		if(n==0)
		{
			cout<<0<

  

 

你可能感兴趣的:(算法,POJ)