- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- 【大模型实战篇】大模型周边NLP技术回顾及预训练模型数据预处理过程解析(预告)
源泉的小广场
大模型自然语言处理人工智能大模型LLM预训练模型数据预处理高质量数据
1.背景介绍进入到大模型时代,似乎宣告了与过去自然语言处理技术的结束,但其实这两者并不矛盾。大模型时代,原有的自然语言处理技术,依然可以在大模型的诸多场景中应用,特别是对数据的预处理阶段。本篇主要关注TextCNN、FastText和Word2Vec等低成本的自然语言处理技术,如何在大模型时代发挥其余热。今天先抛出这个主题预告,接下来会花些时间,逐步细化分析这些周边技术的算法原理、数学分析以及大模
- 自然语言处理系列五十一》文本分类算法》Python快速文本分类器FastText
陈敬雷-充电了么-CEO兼CTO
算法人工智能大数据自然语言处理分类pythonchatgpt人工智能ai机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理FastText和Word2vec的区别FastText代码实战总结自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理自然语言处理(N
- 每天一个数据分析题(五百二十)- 词嵌入模型
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
关于词嵌入模型,以下说法错误的是?A.GloVe模型属于词嵌入模型B.Word2Vec模型属于词嵌入模型C.词袋模型属于词嵌入模型D.词嵌入模型基本假设是出现在相似的上下文中的词含义相似数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于CDA模拟题库点击此处获取答案
- CnOpenData公共数据专区上新 | 中文金融情感词典
CnOpenData
数据列表深度学习python自然语言处理
中文金融情感词典一、数据简介 姜富伟教授及其研究团队于2021年第4期《经济学(季刊)》发表了《媒体文本情绪与股票回报预测》,并在文中介绍了一项极富创造力的金融学科研究成果——中文金融情感词典。 “本文在LoughranandMacDonald(2011)词典的基础上通过人工筛选和word2vec算法扩充,构建了一个更新更全面的中文金融情感词典。我们使用该情感词典计算我国财经媒体文本情绪指标,
- 23 注意力机制—BERT
Unknown To Known
动手学习深度学习bert人工智能深度学习
目录BERT预训练NLP里的迁移学习BERTBERT动机BERT预训练NLP里的迁移学习在计算机视觉中比较流行,将ImageNet或者更大的数据集上预训练好的模型应用到其他任务中,比如小数据的预测、图片分类或者是目标检测使用预训练好的模型(例如word2vec或语言模型)来抽取词、句子的特征做迁移学习的时候,一般不更新预训练好的模型在更换任务之后,还是需要构建新的网络来抓取新任务需要的信息使用预训
- 基于seq2seq的SKchat语言模型
eric-sjq
语言模型人工智能自然语言处理
SKchat语言模型是由小思框架开放的中文语言模型,基于seq2seq以及word2vec。v3模型的对话功能界面~在代码方面,我们优化了seq2seq算法,降低了内存的占用,并构建了新的模型。whileTrue:model.fit([x_encoder,x_decoder],y,batchsize,1,verbose=1,)"""解码模型"""decoder_h_input=Input(shap
- 【自然语言处理】:实验1布置,Word2Vec&TranE的实现
X.AI666
自然语言处理人工智能机器学习自然语言处理
清华大学驭风计划因为篇幅原因实验答案分开上传,答案链接http://t.csdnimg.cn/5cyMG如果需要详细的实验报告或者代码可以私聊博主有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~实验1:Word2Vec&TranE的实现案例简介Word2Vec是词嵌入的经典模型,它通过词之间的上下文信息来建模词的相似度。TransE是知识表示学习领域的经典模型,它借鉴了Word2Ve
- Task5 基于深度学习的文本分类2
listentorain_W
Task5基于深度学习的文本分类2在上一章节,我们通过FastText快速实现了基于深度学习的文本分类模型,但是这个模型并不是最优的。在本章我们将继续深入。基于深度学习的文本分类本章将继续学习基于深度学习的文本分类。学习目标学习Word2Vec的使用和基础原理学习使用TextCNN、TextRNN进行文本表示学习使用HAN网络结构完成文本分类文本表示方法Part3词向量本节通过word2vec学习
- 使用word2vec+tensorflow自然语言处理NLP
取名真难.
机器学习自然语言处理word2vectensorflow机器学习深度学习神经网络
目录介绍:搭建上下文或预测目标词来学习词向量建模1:建模2:预测:介绍:Word2Vec是一种用于将文本转换为向量表示的技术。它是由谷歌团队于2013年提出的一种神经网络模型。Word2Vec可以将单词表示为高维空间中的向量,使得具有相似含义的单词在向量空间中距离较近。这种向量表示可以用于各种自然语言处理任务,如语义相似度计算、文本分类和命名实体识别等。Word2Vec的核心思想是通过预测上下文或
- 使用Word Embedding+Keras进行自然语言处理NLP
取名真难.
机器学习keraspython深度学习神经网络人工智能自然语言处理
目录介绍:one-hot:pad_sequences:建模:介绍:WordEmbedding是一种将单词表示为低维稠密向量的技术。它通过学习单词在文本中的上下文关系,将其映射到一个连续的向量空间中。在这个向量空间中,相似的单词在空间中的距离也比较接近,具有相似含义的单词在空间中的方向也比较一致。WordEmbedding可以通过各种方法来实现,包括基于统计的方法(如Word2Vec和GloVe)和
- 知识图谱与语言预训练:深度融合的智能问答时代
cooldream2009
AI技术NLP知识知识图谱知识图谱人工智能预训练
目录前言1直接使用预训练模型vs.知识图谱与预训练相结合1.1直接使用预训练模型1.2构建知识图谱后与预训练相结合2预训练语言模型的发展历程2.1Word2Vec和GloVe2.2ELMo2.3BERT3知识图谱对预训练的助力3.1弥补低频实体信息的不足3.2提供领域知识的支持4典型知识驱动的语言预训练模型4.1ERNIE4.2KnowBERT4.3WKLM4.4K-Adapter结语前言在自然语
- word2vec工具学习笔记
适说心语
今天是第一次听说这个工具,本来是为了解决非目标客户的问题,但是要从头了解这个内容,所以边找资料边记录一下!一、简介Word2vec,是为一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示
- 图解word2vec,入门自然语言处理必看
学术Fun
(关注'AI新视野'公众号,发送‘资料’二字,免费获取50G人工智能视频教程!)图解word2vec精翻版,加入了自己的理解,和稍微有点出入,http://jalammar.github.io/illustrated-word2vec/image词嵌入(embedding)是机器学习中最惊人的创造,如果你有使用过Siri、GoogleAssistant、Alexa、Google翻译,输入法打字预测
- Tensorflow 实现 Word2Vec
王小鸟_wpcool
今天学习了一下《Tensorflow实战》这本书中第7章内容,利用tensorflow实现word2vec。其实书中内容就是Tensorflow教程中的例子,现在挣钱真容易。附链接https://github.com/tensorflow/tensorflow/blob/r0.12/tensorflow/examples/tutorials/word2vec/word2vec_basic.py代码
- 自然语言处理N天-Day0503句向量模型 Doc2Vec
我的昵称违规了
新建MicrosoftPowerPoint演示文稿(2).jpg说明:本文依据《中文自然语言处理入门实战》完成。目前网上有不少转载的课程,我是从GitChat上购买。第五课句向量模型Doc2VecDoc2VecDoc2Vec模型是在Word2Vec模型上提出的计算长文本向量的工具。Doc2vec接收一个由LabeledSentence对象组成的迭代器作为其构造函数的输入参数。其中,LabeledS
- 揭秘Word2Vec:探索语言的魔法世界
洞深视界
word2veceasyui人工智能机器学习深度学习git自然语言处理
欢迎来到Word2Vec的世界!在自然语言处理的舞台上,Word2Vec犹如一位神秘的魔术师,带领我们探索语言的魔法世界。今天,让我们一同踏上这段充满惊喜的旅程,揭秘Word2Vec的神秘面纱。背景:语言的奥秘语言是人类沟通交流的重要工具,但其中隐藏着许多奥秘。在过去,计算机很难理解和处理语言,直到Word2Vec的出现,才让计算机开始懂得了语言的奥秘。Word2Vec的基本原理Word2Vec是
- gensim模型(1)——Word2Vec
qqqh777
Word2Vec模型介绍Gensim的Word2Vec模型且展示其在LeeEvaluationCorpus上的用法。importlogginglogging.basicConfig(format='%(asctims)s:%(levelname)s:%(message)s',level=logging.INFO)如果你错过了提示,Word2Vec是基于神经网络的广泛使用的算法,通常被称为"深度学习
- 刘知远LLM——神经网络基础
李日音
神经网络人工智能深度学习
文章目录神经网络基础基本构成如何训练?Word2Vec例子负采样:循环神经网络RNN门控计算单元GRU长短时记忆网络LSTM遗忘门输入门输出门双向RNN卷积神经网络CNNpytorch实战神经网络基础基本构成全称:人工神经网络。启发于生物神经细胞单个神经元单层神经网络前向计算激活函数的作用:没有激活函数的话,多层神经网络就会退化为单层输出层线性输出:回归问题sigmoid:二分类softmax:多
- Gensim详细介绍和使用:一个Python文本建模库
Bigcrab__
Python库介绍和使用python
Gensim=“GenerateSimilar”一、安装二、文本预处理2.1中文语料处理2.2英文语料处理2.3BOW语料建立三、模型使用3.1word2vecThealgorithmsinGensim,suchasWord2Vec,FastText,LatentSemanticIndexing(LSI,LSA,LsiModel),LatentDirichletAllocation(LDA,Lda
- 【爬虫实战】python文本分析库——Gensim
认真写程序的强哥
爬虫pythonPython爬虫Python学习Python文本分析Gensim开发语言
文章目录01、引言02、主题分析以及文本相似性分析03、关键词提取04、Word2Vec嵌入(词嵌入WordEmbeddings)05、FastText嵌入(子词嵌入SubwordEmbeddings)06、文档向量化01、引言Gensim是一个用于自然语言处理和文本分析的Python库,提供了许多强大的功能,包括文档的相似度计算、关键词提取和文档的主题分析,要开始使用Gensim,您需要安装它,
- 探索NLP中的N-grams:理解,应用与优化
冷冻工厂
程序人生
简介n-gram[1]是文本文档中n个连续项目的集合,其中可能包括单词、数字、符号和标点符号。N-gram模型在许多与单词序列相关的文本分析应用中非常有用,例如情感分析、文本分类和文本生成。N-gram建模是用于将文本从非结构化格式转换为结构化格式的众多技术之一。n-gram的替代方法是词嵌入技术,例如word2vec。N-grams广泛用于文本挖掘和自然语言处理任务。示例通过计算每个唯一的n元语
- 智慧海洋建设-Task3 特征工程
1598903c9dd7
关于本次智慧海洋特征构建分为时间类特征、分箱特征(x、y、v)、DataFrame特征(计数特征和偏移量特征)、统计特征(聚合)、embedding特征(word2vec、NMF)这几方面进行考虑的。分箱特征的重要性:一般在建立分类模型时,需要对连续变量离散化,特征离散化后,模型会更稳定,降低了模型过拟合的风险。离散特征的增加和减少都很容易,易于模型的快速迭代;稀疏向量内积乘法运算速度快,计算结果
- Vision Transformer及其变体(自用)
ST-Naive
transformer深度学习人工智能
0回顾Transformer0.1encoder在正式开始ViT之前,先来复习一遍transformer的核心机制相关的文章有很多,我选了一遍最通俗易懂的放在这:Transformer通俗笔记:从Word2Vec、Seq2Seq逐步理解到GPT、BERT所谓注意力机制,就是Attention=∑similarity(Query,Key)*Value,Q可以理解为单词在当前的表示,K为单词的标签,V
- 学习知识记录
想努力的人
面试算法cnn深度学习tensorflow
1、nnlm神经网络语言模型:ANeuralProbabilisticLanguageModel------阅读笔记_hx14301009的博客-CSDN博客2、Word2vec的skipgram模型输入是中心词和背景词NLP之---word2vec算法skip-gram原理详解_Ricky-CSDN博客_skipgram层级的softmax:本质是将N分类问题转换成logN(底数为2)次的二分类
- NLP_词的向量表示Word2Vec 和 Embedding
you_are_my_sunshine*
NLP自然语言处理word2vecembedding
文章目录词向量Word2Vec:CBOW模型和Skip-Gram模型通过nn.Embedding来实现词嵌入Word2Vec小结词向量下面这张图就形象地呈现了词向量的内涵:把词转化为向量,从而捕捉词与词之间的语义和句法关系,使得具有相似含义或相关性的词语在向量空间中距离较近。我们把语料库中的词和某些上下文信息,都“嵌入”了向量表示中。将词映射到向量空间时,会将这个词和它周围的一些词语一起学习,这就
- 利用Bert模型进行命名实体识别
刘单纯
之前两天也写了word2vec和Transformer,其实都是在为今天的内容做铺垫。最近正好使用bert做了命名实体识别项目,借这个契机分享出来,希望能帮到有需要的人。自然语言的表示之所以之前自然语言处理的发展没有达到CV领域,很大一部分原因是很难把抽象的语言用准确的数学方式表示。one-hot只能说对词进行编码,毫无“相似度”的概念,例如【川老师】和【特朗普】的距离与【川老师】和【苍老师】的距
- 【NLP】 Word2Vec模型 & Doc2Vec模型
Sonhhxg_柒
自然语言处理(NLP)自然语言处理word2vec机器学习
大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流个人主页-Sonhhxg_柒的博客_CSDN博客欢迎各位→点赞+收藏⭐️+留言系列专栏-机器学习【ML】自然语言处理【NLP】深度学习【DL】foreword✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。如果你对这个系列感兴趣的话,可以关注订阅哟Word
- 大模型|基础_word2vec
晓源Galois
word2vec人工智能自然语言处理
文章目录Word2Vec词袋模型CBOWContinuousBag-of-WordsContinuousSkip-Gram存在的问题解决方案其他技巧Word2Vec将词转化为向量后,会发现king和queen的差别与man和woman的差别是类似的,而在几何空间上,这样的差别将会以平行的关系进行表达。会使用滑动窗口的机制。滑动窗口内会有一个target目标词(上图蓝色部分),滑动窗口其他部分就是c
- 自然语言处理中的深度学习
qiufeng1ye
教材选用《动手学深度学习》,李沐等著;词嵌⼊(word2vec)⾃然语⾔是⼀套⽤来表达含义的复杂系统。把词映射为实数域向量的技术也叫词嵌⼊(wordembedding)。近年来,词嵌⼊已逐渐成为⾃然语⾔处理的基础知识。Word2vec⼯具包含了两个模型:跳字模型(skip-gram)和连续词袋模型(continuousbagofwords,简称CBOW)。跳字模型假设基于中⼼词来⽣成背景词,连续词
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的