Lanczos插值,最邻近插值,双线性二次插值,三次插值

[研究内容]

目前比较常用的几种插值算法

[正文]

目前比较常用的插值算法有这么几种:最邻近插值,双线性二次插值,三次插值,

Lanczos插值等等,今天我们来对比一下这几种插值效果的优劣。

1,最邻近插值

最邻近插值算法也叫做零阶插值算法,主要原理是让输出像素的像素值等于邻域内离它距离最近的像素值。例如下图中所示,P1距离0灰度值像素的距离小于100灰度值的距离,因此,P1位置的插值像素为0。这个算法的优点是计算简单方便,缺点是图像容易出现锯齿。Lanczos插值,最邻近插值,双线性二次插值,三次插值_第1张图片
2,双线性二次插值

在介绍双线性插值前,我们先介绍一下拉格朗日插值多项式。本文参考引用均来自张铁的《数值分析》一书。
Lanczos插值,最邻近插值,双线性二次插值,三次插值_第2张图片Lanczos插值,最邻近插值,双线性二次插值,三次插值_第3张图片
Lanczos插值,最邻近插值,双线性二次插值,三次插值_第4张图片
我们的方法是这样的,根据水平方向上的双线性二次插值,由 f ( i , j ) f(i,j) f(i,j) f ( i + 1 , j ) f(i+1,j) f(i+1,j)求取 f ( x , j ) f(x,j) f(x,j),由

f ( i , j + 1 ) f(i,j+1) f(i,j+1) f ( i + 1 , j + 1 ) f(i+1,j+1) f(i+1,j+1)求取 f ( x , j + 1 ) f(x,j+1) f(x,j+1),然后再根据这两点的二次插值求取 f ( x , y ) f(x,y) f(x,y)

根据前面的例题,我们可以很容易的求取各点插值如下:
(1-4) f ( x , j ) = ( i + 1 − x ) f ( i , j ) + ( x − i ) f ( i + 1 , j ) f(x,j)=(i+1-x)f(i,j)+(x-i)f(i+1,j) \tag{1-4} f(x,j)=(i+1x)f(i,j)+(xi)f(i+1,j)(1-4)
(1-5) f ( x , j + 1 ) = ( i + 1 − x ) f ( i , j + 1 ) + ( x − i ) f ( i + 1 , j + 1 ) f(x,j+1)=(i+1-x)f(i,j+1)+(x-i)f(i+1,j+1) \tag{1-5} f(x,j+1)=(i+1x)f(i,j+1)+(xi)f(i+1,j+1)(1-5)
(1-6) f ( x , y ) = ( i + 1 − y ) f ( x , j ) + ( y − j ) f ( x , j + 1 ) f(x,y)=(i+1-y)f(x,j)+(y-j)f(x,j+1) \tag{1-6} f(x,y)=(i+1y)f(x,j)+(yj)f(x,j+1)(1-6)

以上三式综合可以得到:
(1-7) f ( x , y ) = ( j + 1 − y ) ( i + 1 − x ) f ( i , j ) + ( j + 1 − y ) ( x − i ) f ( i + 1 , j ) + ( y − j ) ( i + 1 − x ) f ( i , j + 1 ) + ( y − j ) ( x − i ) f ( i + 1 , j + 1 ) \begin{aligned} f(x,y)=&(j+1-y)(i+1-x)f(i,j)+(j+1-y)(x-i)f(i+1,j)\\&+(y-j)(i+1-x)f(i,j+1)+(y-j)(x-i)f(i+1,j+1) \tag{1-7} \end{aligned} f(x,y)=(j+1y)(i+1x)f(i,j)+(j+1y)(xi)f(i+1,j)+(yj)(i+1x)f(i,j+1)+(yj)(xi)f(i+1,j+1)(1-7)

我们令 x = i + p , y = j + q x=i+p,y=j+q x=i+p,y=j+q得:
(1-8) f ( i + p , j + q ) = ( 1 − q ) ( 1 − p ) f ( I , j ) + p ( 1 − q ) f ( i + 1 , j ) + q ( 1 − p ) f ( i , j + 1 ) + p q f ( i + 1 , j + 1 ) \begin{aligned} f(i+p,j+q)=&(1-q)(1-p)f(I,j)+p(1-q)f(i+1,j)+q(1-p)f(i,j+1)\\ &+pqf(i+1,j+1) \tag{1-8} \end{aligned} f(i+p,j+q)=(1q)(1p)f(I,j)+p(1q)f(i+1,j)+q(1p)f(i,j+1)+pqf(i+1,j+1)(1-8)

上式即为数字图像处理中的双线性二次插值公式。

3,双线性三次插值
Lanczos插值,最邻近插值,双线性二次插值,三次插值_第5张图片
(1-12) A = [ S ( 1 + v ) S ( v ) S ( 1 − v ) S ( 2 − v ) ] A= \begin{bmatrix} S(1+v)&S(v)&S(1-v)&S(2-v) \end{bmatrix} \tag{1-12} A=[S(1+v)S(v)S(1v)S(2v)](1-12)
(1-13) B = [ f ( i − 1 , j − 1 ) f ( i − 1 , j ) f ( i − 1 , j + 1 ) f ( i − 1 , j + 2 ) f ( i , j − 1 ) f ( i , j ) f ( i , j + 1 ) f ( i , j + 2 ) f ( i + 1 , j − 1 ) f ( i + 1 , j ) f ( i + 1 , j + 1 ) f ( i + 1 , j + 2 ) f ( i + 2 , j − 1 ) f ( i + 2 , j ) f ( i + 2 , j + 1 ) f ( i + 2 , j + 2 ) ] B= \begin{bmatrix} f(i-1,j-1)&f(i-1,j)&f(i-1,j+1)&f(i-1,j+2)\\ f(i,j-1)&f(i,j)&f(i,j+1)&f(i,j+2)\\ f(i+1,j-1)&f(i+1,j)&f(i+1,j+1)&f(i+1,j+2)\\ f(i+2,j-1)&f(i+2,j)&f(i+2,j+1)&f(i+2,j+2) \end{bmatrix} \tag{1-13} B=f(i1,j1)f(i,j1)f(i+1,j1)f(i+2,j1)f(i1,j)f(i,j)f(i+1,j)f(i+2,j)f(i1,j+1)f(i,j+1)f(i+1,j+1)f(i+2,j+1)f(i1,j+2)f(i,j+2)f(i+1,j+2)f(i+2,j+2)(1-13)
(1-14) C = [ S ( 1 + u ) S ( u ) S ( 1 − u ) S ( 2 − u ) ] C= \begin{bmatrix} S(1+u)\\ S(u)\\ S(1-u)\\ S(2-u) \end{bmatrix} \tag{1-14} C=S(1+u)S(u)S(1u)S(2u)(1-14)
等价于(可自行推导)

(1-15) f ( i + v , j + u ) = ∑ r o w = − 1 2 ∑ c o l = − 1 2 f ( i + r o w , j + c o l ) S ( r o w − v ) S ( c o l − u ) f(i+v,j+u)=\sum_{row=-1}^{2}\sum_{col=-1}^{2}f(i+row,j+col)S(row-v)S(col-u) \tag{1-15} f(i+v,j+u)=row=12col=12f(i+row,j+col)S(rowv)S(colu)(1-15)

提示:
一定要区分本文中 v v v, u u u r o w row row, c o l col col的对应关系, v v v代表行数偏差, u u u代表列数偏差(如果混淆了,会造成最终的图像偏差很大)

4,Lanczos插值算法

该算法的主要原理介绍地址:http://en.wikipedia.org/wiki/Lanczos_resampling

这里我大概介绍一下算法的流程:

这个算法也是一个模板算法,主要内容是计算模板中的权重信息。

对于一维信息,假如我们输入点集为 X X X,那么,Lanczos对应有个窗口模板Window,这个窗口中每个位置的权重计算如下:
Lanczos插值,最邻近插值,双线性二次插值,三次插值_第6张图片

Fig.6 Lanczos


Lanczos插值,最邻近插值,双线性二次插值,三次插值_第7张图片
通常,这个 a a a取2或者3, a = 2 a=2 a=2时,该算法适用于图像缩小插值; a = 3 a=3 a=3时,该算法适用于放大插值;对应不同 a a a值得Lanczos插值曲线如上图6所示;上述的公式分别为连续和离散的公式。我们根据输入点X的位置,确定对应window中不同位置的权重L(x),然后对模板中的点值取加权平均,公式如下:
在这里插入图片描述(1-13)
这个 S ( x ) S(x) S(x)即为 X X X处的插值结果。

根据上述一维插值,推广得到多维插值公式如下(这里以二维为例):
Lanczos插值,最邻近插值,双线性二次插值,三次插值_第8张图片(1-14)
上述内容是对不同插值算法简单的进行了介绍,如果不明白可以查找相关知识。

现在我们来看下相应的效果图:
Lanczos插值,最邻近插值,双线性二次插值,三次插值_第9张图片
Lanczos插值,最邻近插值,双线性二次插值,三次插值_第10张图片
Lanczos插值,最邻近插值,双线性二次插值,三次插值_第11张图片
上面的一组效果图均是先将原图缩小50%,然后使用不同算法放大到原图大小得到的。由上面这组图我们可以发现,效果最差的是最邻近插值算法,效果最好的是双线性三次插值,Lanczos算法跟三次插值大致一致;

由于编程语言不同,可能会造成耗时的差距,但是,对于同一种语言,统计得出:最邻近插值速度最快,三次插值速度最慢,而Lanczos算法与二次插值相仿。

综上,Lanczos插值具有速度快,效果好,性价比最高的优点,这也是目前此算法比较流行的原因。

最后,给出一个本人使用C#写的Lanczos代码,代码未经优化,仅供测试,这里的NP是对权重计算构建的映射表:
private Bitmap ZoomLanczos2Apply(Bitmap srcBitmap, double k)
{
Bitmap src = new Bitmap(srcBitmap);
int width = src.Width;
int height = src.Height;
BitmapData srcData = src.LockBits(new Rectangle(0, 0, width, height), ImageLockMode.ReadWrite, PixelFormat.Format32bppArgb);
byte* pS = (byte*)srcData.Scan0;
int w = (int)((double)width * k);
int h = (int)((double)height * k);
Bitmap dst = new Bitmap(w, h, PixelFormat.Format32bppArgb);
BitmapData dstData = dst.LockBits(new Rectangle(0, 0, w, h), ImageLockMode.ReadWrite, PixelFormat.Format32bppArgb);
byte* d = (byte*)dstData.Scan0;
int offset = dstData.Stride - w * 4;
int x = 0, y = 0;
double p = 0, q = 0;
double n1 = 0, n2 = 0, n3 = 0, n4 = 0, nSum = 0;
int p0 = 0, p1 = 0, p2 = 0, p3 = 0, p4 = 0, gray = 0;
byte* temp = null;
double[] NP1 = new double[] { -0.00623896218505032, -0.0122238956025722, -0.0179556611741633, -0.0234353793884155, -0.028664425422539, -0.0336444239814841, -0.0383772438642046, -0.0428649922670393, -0.0471100088344975, -0.0511148594680326, -0.0548823299036605, -0.0584154190695433, -0.0617173322348938, -0.0647914739617815, -0.0676414408716196, -0.0702710142382982, -0.0726841524200902, -0.0748849831426012, -0.0768777956451566, -0.0786670327031274, -0.0802572825387739, -0.0816532706332581, -0.0828598514525135, -0.0838820000996894, -0.0847248039068906, -0.0853934539789171, -0.0858932367016755, -0.0862295252278804, -0.0864077709525887, -0.0864334949910196, -0.086312279671003, -0.0860497600522689, -0.0856516154846428, -0.0851235612170509, -0.0844713400690516, -0.0837007141764163, -0.0828174568220629, -0.0818273443634177, -0.0807361482670294, -0.0795496272610035, -0.0782735196155422, -0.0769135355615895, -0.0754753498572731, -0.0739645945115212, -0.0723868516738999, -0.0707476466993797, -0.0690524413963838, -0.0673066274661114, -0.0655155201407567, -0.0636843520278618, -0.0618182671676555, -0.0599223153098279, -0.0580014464157926, -0.0560605053920726, -0.0541042270600343, -0.0521372313667693, -0.0501640188415028, -0.048188966301476, -0.0462163228108206, -0.0442502058955092, -0.0422945980170336, -0.0403533433070252, -0.0384301445645995, -0.0365285605177724, -0.0346520033498648, -0.0328037364913793, -0.0309868726774121, -0.0292043722702325, -0.0274590418462525, -0.0257535330461864, -0.0240903416868009, -0.0224718071322479, -0.0209001119225812, -0.0193772816566703, -0.0179051851263444, -0.0164855346982315, -0.015119886939392, -0.013809643482501, -0.0125560521259855, -0.0113602081641975, -0.0102230559423803, -0.00914539063088284, -0.00812786021277406, -0.00717096767873418, -0.00627507342282205, -0.00544039783246632, -0.00466702406578012, -0.00395490100907222, -0.00330384640720963, -0.00271355015928674, -0.00218357777186753, -0.00171337396189679, -0.00130226640121749, -0.000949469594490465, -0.00065408888218426, -0.000415124560192089, -0.000231476107535702, -0.000101946513534946, -0 };
double[] NP2 = new double[] { 0.999794398630316, 0.999177779156011, 0.998150695261436, 0.996714069021198, 0.994869189802256, 0.992617712728975, 0.989961656713271, 0.986903402052547, 0.983445687598761, 0.979591607502511, 0.975344607536654, 0.9707084810045, 0.965687364238256, 0.960285731693901, 0.954508390649264, 0.948360475512591, 0.941847441749449, 0.934975059436304, 0.927749406449645, 0.920176861299994, 0.912264095620641, 0.904018066321406, 0.895446007418168, 0.886555421549337, 0.877354071190877, 0.867849969581877, 0.858051371373022, 0.847966763010743, 0.83760485287009, 0.826974561149762, 0.816085009542993, 0.804945510698284, 0.793565557484247, 0.781954812073053, 0.770123094857198, 0.758080373214511, 0.745836750136481, 0.733402452735159, 0.720787820644003, 0.708003294328147, 0.695059403319663, 0.68196675439345, 0.668736019699406, 0.655377924866579, 0.641903237094975, 0.628322753250659, 0.614647287979759, 0.600887661856885, 0.587054689583387, 0.573159168250756, 0.559211865684328, 0.545223508882287, 0.531204772564777, 0.517166267847729, 0.503118531055783, 0.489072012688425, 0.47503706655321, 0.461023939079635, 0.447042758826945, 0.433103526198797, 0.419216103377392, 0.405390204489315, 0.391635386014941, 0.37796103745288, 0.364376372250524, 0.350890419011333, 0.33751201298905, 0.324249787878619, 0.311112167913061, 0.298107360275149, 0.285243347832182, 0.272527882201696, 0.259968477155437, 0.247572402368387, 0.235346677519141, 0.223298066747373, 0.211433073473617, 0.199757935586031, 0.188278620998268, 0.177000823582037, 0.165929959477376, 0.155071163783102, 0.144429287629353, 0.13400889563358, 0.123814263740785, 0.113849377448258, 0.104117930414501, 0.0946233234514916, 0.0853686638988765, 0.0763567653781721, 0.0675901479244855, 0.059071038492763, 0.050801371835042, 0.0427827917446759, 0.0350166526629909, 0.0275040216433488, 0.0202456806670952, 0.0132421293054104, 0.00649358772061002 };
double[] NP3 = new double[] { 0.00649358772061002, 0.0132421293054104, 0.0202456806670952, 0.0275040216433488, 0.0350166526629909, 0.0427827917446759, 0.0508013718350421, 0.059071038492763, 0.0675901479244855, 0.0763567653781721, 0.0853686638988765, 0.0946233234514916, 0.104117930414501, 0.113849377448258, 0.123814263740785, 0.13400889563358, 0.144429287629353, 0.155071163783102, 0.165929959477376, 0.177000823582037, 0.188278620998268, 0.199757935586031, 0.211433073473617, 0.223298066747373, 0.235346677519141, 0.247572402368387, 0.259968477155437, 0.272527882201696, 0.285243347832182, 0.298107360275149, 0.311112167913061, 0.324249787878619, 0.33751201298905, 0.350890419011333, 0.364376372250524, 0.37796103745288, 0.391635386014941, 0.405390204489315, 0.419216103377392, 0.433103526198797, 0.447042758826944, 0.461023939079634, 0.475037066553209, 0.489072012688425, 0.503118531055783, 0.517166267847729, 0.531204772564777, 0.545223508882287, 0.559211865684328, 0.573159168250756, 0.587054689583387, 0.600887661856885, 0.614647287979759, 0.628322753250659, 0.641903237094975, 0.655377924866579, 0.668736019699406, 0.68196675439345, 0.695059403319663, 0.708003294328147, 0.720787820644003, 0.733402452735159, 0.745836750136481, 0.758080373214511, 0.770123094857198, 0.781954812073053, 0.793565557484247, 0.804945510698284, 0.816085009542993, 0.826974561149762, 0.837604852870089, 0.847966763010743, 0.858051371373022, 0.867849969581877, 0.877354071190877, 0.886555421549337, 0.895446007418168, 0.904018066321406, 0.912264095620641, 0.920176861299994, 0.927749406449646, 0.934975059436304, 0.941847441749449, 0.948360475512591, 0.954508390649264, 0.960285731693901, 0.965687364238256, 0.9707084810045, 0.975344607536654, 0.979591607502512, 0.983445687598761, 0.986903402052547, 0.989961656713271, 0.992617712728975, 0.994869189802256, 0.996714069021198, 0.998150695261436, 0.999177779156011, 0.999794398630316 };
double[] NP4 = new double[] { -0, -0.000101946513534946, -0.000231476107535702, -0.000415124560192089, -0.00065408888218426, -0.000949469594490465, -0.0013022664012175, -0.00171337396189679, -0.00218357777186754, -0.00271355015928674, -0.00330384640720965, -0.00395490100907222, -0.00466702406578012, -0.00544039783246632, -0.00627507342282205, -0.00717096767873415, -0.00812786021277406, -0.00914539063088281, -0.0102230559423803, -0.0113602081641975, -0.0125560521259855, -0.013809643482501, -0.015119886939392, -0.0164855346982315, -0.0179051851263444, -0.0193772816566703, -0.0209001119225812, -0.0224718071322479, -0.0240903416868009, -0.0257535330461864, -0.0274590418462525, -0.0292043722702326, -0.0309868726774121, -0.0328037364913794, -0.0346520033498648, -0.0365285605177724, -0.0384301445645995, -0.0403533433070252, -0.0422945980170336, -0.0442502058955092, -0.0462163228108205, -0.048188966301476, -0.0501640188415028, -0.0521372313667693, -0.0541042270600343, -0.0560605053920726, -0.0580014464157926, -0.0599223153098279, -0.0618182671676555, -0.0636843520278618, -0.0655155201407567, -0.0673066274661114, -0.0690524413963838, -0.0707476466993797, -0.0723868516738999, -0.0739645945115212, -0.0754753498572731, -0.0769135355615895, -0.0782735196155421, -0.0795496272610035, -0.0807361482670294, -0.0818273443634177, -0.0828174568220629, -0.0837007141764163, -0.0844713400690516, -0.0851235612170509, -0.0856516154846428, -0.0860497600522689, -0.086312279671003, -0.0864334949910196, -0.0864077709525887, -0.0862295252278804, -0.0858932367016755, -0.0853934539789171, -0.0847248039068906, -0.0838820000996894, -0.0828598514525135, -0.0816532706332581, -0.0802572825387739, -0.0786670327031274, -0.0768777956451566, -0.0748849831426012, -0.0726841524200902, -0.0702710142382982, -0.0676414408716196, -0.0647914739617815, -0.0617173322348938, -0.0584154190695433, -0.0548823299036604, -0.0511148594680326, -0.0471100088344975, -0.0428649922670393, -0.0383772438642045, -0.0336444239814841, -0.028664425422539, -0.0234353793884155, -0.0179556611741633, -0.0122238956025722, -0.00623896218505032 };
for (int j = 0; j < h; j++)
{
q = (double)j / (double)k;
y = (int)q;
q = Math.Abs(q - (double)y);
p0 = y * srcData.Stride;
y = y >= height ? height - 1 : y;
for (int i = 0; i < w; i++)
{
p = (double)i / (double)k;
x = (int)p;
p = Math.Abs(p - (double)x);
temp = d + i * 4 + j * dstData.Stride;
if (p != 0)
{
x = (x >= width - 3 ? width - 3 : x);
x = x < 1 ? 1 : x;
gray = (int)(p * 100.0) - 1;
gray = Math.Max(0, gray);
n1 = NP1[gray];
n2 = NP2[gray];
n3 = NP3[gray];
n4 = 1.0 - n1 - n2 - n3;// NP4[gray];
p2 = x * 4 + p0;
p1 = p2 - 4;
p3 = p2 + 4;
p4 = p2 + 8;
nSum = n1 + n2 + n3 + n4;
gray = (int)((n1 * (double)((pS + p1)[0]) + n2 * (double)((pS + p2)[0]) + n3 * (double)((pS + p3)[0]) + n4 * (double)((pS + p4)[0])));
gray = Math.Max(0, Math.Min(255, gray));
temp[0] = (byte)gray;
gray = (int)((n1 * (double)((pS + p1)[1]) + n2 * (double)((pS + p2)[1]) + n3 * (double)((pS + p3)[1]) + n4 * (double)((pS + p4)[1])));
gray = Math.Max(0, Math.Min(255, gray));
temp[1] = (byte)gray;
gray = (int)((n1 * (double)((pS + p1)[2]) + n2 * (double)((pS + p2)[2]) + n3 * (double)((pS + p3)[2]) + n4 * (double)((pS + p4)[2])));
gray = Math.Max(0, Math.Min(255, gray));
temp[2] = (byte)gray;
}
else
{
x = x >= width ? width - 1 : x;
gray = x * 4 + y * srcData.Stride;
temp[0] = (byte)(pS + gray)[0];
temp[1] = (byte)(pS + gray)[1];
temp[2] = (byte)(pS + gray)[2];
}
temp[3] = (byte)255;
}
}
for (int i = 0; i < w; i++)
{
p = (double)i / (double)k;
x = (int)p;
p = Math.Abs(p - (double)x);
x = x >= width ? width - 1 : x;
for (int j = 0; j < h; j++)
{
q = (double)j / (double)k;
y = (int)q;
q = Math.Abs(q - (double)y);
p0 = y * srcData.Stride;
temp = d + i * 4 + j * dstData.Stride;
if (q != 0)
{
y = y >= height - 3 ? height - 3 : y;
y = y < 1 ? 1 : y;
gray = (int)(q * 100.0) - 1;
gray = Math.Max(0, gray);
n1 = NP1[gray];
n2 = NP2[gray];
n3 = NP3[gray];
n4 = 1.0 - n1 - n2 - n3;// NP4[gray];
nSum = n1 + n2 + n3 + n4;
p2 = x * 4 + y * srcData.Stride;
p1 = p2 - srcData.Stride;
p3 = p2 + srcData.Stride;
p4 = p3 + srcData.Stride;
gray = (int)((n1 * (double)((pS + p1)[0]) + n2 * (double)((pS + p2)[0]) + n3 * (double)((pS + p3)[0]) + n4 * (double)((pS + p4)[0])));
gray = Math.Max(0, Math.Min(255, gray));
temp[0] = (byte)gray;
gray = (int)((n1 * (double)((pS + p1)[1]) + n2 * (double)((pS + p2)[1]) + n3 * (double)((pS + p3)[1]) + n4 * (double)((pS + p4)[1])));
gray = Math.Max(0, Math.Min(255, gray));
temp[1] = (byte)gray;
gray = (int)((n1 * (double)((pS + p1)[2]) + n2 * (double)((pS + p2)[2]) + n3 * (double)((pS + p3)[2]) + n4 * (double)((pS + p4)[2])));
gray = Math.Max(0, Math.Min(255, gray));
temp[2] = (byte)gray;
}
else
{
y = y >= height ? height - 1 : y;
gray = x * 4 + y * srcData.Stride;
temp[0] = (byte)(pS + gray)[0];
temp[1] = (byte)(pS + gray)[1];
temp[2] = (byte)(pS + gray)[2];
}
temp[3] = (byte)255;
}
}
src.UnlockBits(srcData);
dst.UnlockBits(dstData);
return dst;
}

转载自:https://blog.csdn.net/trent1985/article/details/45150677

你可能感兴趣的:(数学理论,数字图像处理)