- 应用光学的几组公式
萌龙在天
在不同的区域,有不同的计算公式。由于需要对大量光线进行计算,所以计算方法的选择就和重要。优先选择可以消除中间量的计算公式。近轴光线追迹所遵循的公式。其次就是几组放大率的公式,转面公式,拉赫不变量。各个光学系统的分辨率,孔径,入瞳,出瞳之间所遵循的公式。计算像差的公式。符号所代表的意义,以及符号与符号间的联系,需要认真的去用笔去写下来,分析和理解。最主要的就是要明白光学系统所规定的符号规则,正确的标
- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】工业相机
格图素书
数码相机目标检测人工智能
目录知识储备深度相机1TOF2双目视觉3结构光4智能门锁应用5手机应用算法原理相机的成像与标定模型相机标定的实施·标定过程的算法实施相机标定的扩展CCD工业相机、镜头倍率及相关参数计算方法知识储备深度相机1TOF1.1Kinectv2Kinectv2是Microsoft在2014年发售的,如图1-1所示。相比于Kinectv1在硬件和软件上作出了很大的进化,且在深度测量的系统和非系统误差方面表现出
- 2022-04-17
图灵基因
NatBiotech|组织中单细胞转录组的空间图谱原创图灵基因图灵基因2022-04-1707:03收录于话题#前沿生物大数据分析单细胞RNA测序(scRNA-seq)已经彻底改变了单细胞水平上的基因表达研究。最近,空间技术通过添加空间信息将转录组学提升到了一个新的水平。但是,它缺乏单细胞分辨率。现在,来自德克萨斯大学MD安德森癌症中心的一个小组开发了一种名为CellTrek的计算方法,将这两个数
- 计算机视觉中,如何理解自适应和注意力机制的关系?
Wils0nEdwards
计算机视觉人工智能
自适应和注意力机制之间的关系密切相关,注意力机制本质上是一种自适应的计算方法,它能够根据输入数据的不同特点,自主选择和聚焦于输入的某些部分或特征。以下是两者之间的具体关系和如何理解它们:1.注意力机制的自适应特性注意力机制的核心功能是为不同输入元素(如特征、位置、通道等)分配不同的权重。这些权重是通过学习动态生成的,表示模型对不同输入元素的关注程度。由于这些权重是根据具体的输入数据动态计算的,因此
- 数模原理精解【8】
叶绿先锋
基础数学与应用数学人工智能统计分析概率论数学建模
文章目录协方差概述协方差的定义协方差的计算协方差的例子协方差矩阵协方差矩阵定义协方差矩阵的性质协方差矩阵的计算协方差矩阵的例子协方差矩阵的例题多元正态分布基础多元正态分布密度函数多元正态分布密度函数Julia实现详细解释定义计算例子例题参考文献协方差概述协方差是一种统计度量,用于描述两个变量之间的线性相关程度以及它们变化的趋势是否一致。具体来说,协方差计算的是两个变量同时偏离其均值的程度。如果两个
- 子网ip和ip地址一样吗?子网ip地址怎么算
hgdlip
iptcp/ip网络协议网络子网ip
在计算机网络的广阔世界里,IP地址作为设备的唯一标识,扮演着举足轻重的角色。然而,随着网络规模的扩大和复杂性的增加,子网划分成为提升网络管理效率和安全性的重要手段。这时,“子网IP地址”这一概念应运而生,那么。子网IP和IP地址一样吗?本文将深入探讨子网IP地址与普通IP地址之间的差异,并详细解析子网IP地址的计算方法,帮助读者更好地理解和应用这一网络知识。一、子网IP地址
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 《比的意义》教学反思
白沙小学唐媛媛
《比的意义》,这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:(1)比值的表示法,通常用分数表示,
- 3D 场景模拟 2D 碰撞玩法的方案
长脖鹿Johnny
数学算法3d游戏游戏引擎算法几何学
目录方法概述顶点到平面的垂直投影求解最小降维OBB主成分分析(PCA)协方差矩阵求矩阵特征值Jacobi方法OBB拉伸方法对于类似《密特罗德生存恐惧》和《暗影火炬城》这样3D场景,但玩法还是2D卷轴动作平台跳跃(类银河恶魔城)的游戏,如果想要让碰撞检测更符合视觉直觉,需要采用3D碰撞体来模拟2D碰撞。本文将介绍一种实现方案。方法概述为了简化碰撞计算,原碰撞体(如武器的碰撞)只使用长方体(OBB)和
- wpl计算方法_C++二叉树计算带权路径长度(WPL)的算法
weixin_39878549
wpl计算方法
题目:二叉树的带权路径长度是二叉树中所有叶子结点的带权路径长度之和。给定二叉链表的存储的结点结构为left|weight|right存储的是叶子结点的非负权值。设计算法求二叉树的带权路径长度WPL。WPL=∑叶子结点的权值×结点到根结点的分支个数例如:非递归算法算法思想:根据公式,需要记录每个结点到根结点的分支个数,这个过程通过对树进行广度遍历(借助队列)进行记录。在非叶子结点weight初值为-
- python读二进制格点雷达基数据_radar: 基于python pycinrad 以及多种类库 编写基于java 的雷达基数据统一格式读取...
weixin_39793434
radar-core介绍基于pythonpycinrad以及多种类库编写基于java的雷达基数据统一格式读取包括读取分层ppi、插值到等经纬度的网格化ppi以及cappi、vcs等基本计算方法回波顶高、组合反射率、垂直液态水等产品计算后期增加1、气象局l3、swan雷达格式读取2、降水估计、光流+半拉格朗日外推等多种雷达算法软件架构1、radar-core雷达基数据读取类库(1)读取方法Strin
- 位操作(Bitwise Operation)
学Java的skyyyyyyyy
java位操作数据结构
位操作(BitwiseOperation)是一种直接对整数的二进制位进行操作的计算方法。在计算机中,数据通常以二进制形式存储,位操作允许我们直接操作这些二进制位。位操作通常比常规的算术运算更高效,因为它们直接作用于二进制位而不涉及更复杂的计算。常见的位操作符1.按位与(&):对应位都为1时,结果为1,否则为0。例如:1010&1100=10002.按位或(|):只要对应位有一个为1,结果就为1。例
- crc循环冗余校验码c语言,CRC循环冗余校验码的生成
子绘绘
crc循环冗余校验码c语言
众所周知,不可能有永远都不会出错的人,同样也不可能有永远不出错的计算机,永远不出错的数据。人有知错能改的觉悟,计算机也有,不过计算机没有人类聪明,只能通过一个特定的方法进行自我改正,这就是校验码存在的必要了。一般用得比较多的校验码有奇偶校验码,CRC循环冗余校验码,海明校验码等。这里只介绍用的最多的CRC循环冗余校验码。何为校验码校验码是通过一种计算方法,发出端在原始数据的尾部添加若干数据;然后接
- TCP为什么是可靠的传输
healing97
网络
TCP为什么是可靠的传输(1)检验和TCP检验和的计算与UDP一样,在计算时要加上12byte的伪首部,检验范围包括TCP首部及数据部分,但是UDP的检验和字段为可选的,而TCP中是必须有的。计算方法为:在发送方将整个报文段分为多个16位的段,然后将所有段进行反码相加,将结果存放在检验和字段中,接收方用相同的方法进行计算,如最终结果为检验字段所有位是全1则正确(UDP中为0是正确),否则存在错误。
- Fréchet Inception Distance(FID)原理
代维7
生成式模型计算机视觉
原理概述:FID的核心思想是通过比较真实图像和生成图像在Inception模型特征空间中的分布差异,来评估生成模型的性能。它假设从真实数据和生成数据中提取的特征都近似服从高斯分布。具体步骤:特征提取:使用预训练的Inception模型分别对真实图像和生成图像进行处理,得到各自的特征向量。计算均值和协方差:对于真实图像的特征向量集合,计算其均值向量μreal\mu_{real}μreal和协方差矩阵
- 机器学习系列12:反向传播算法
SuperFengCode
机器学习系列机器学习神经网络反向传播算法梯度检验机器学习笔记
当我们要运用高级算法进行梯度下降时,需要计算两个值,代价函数和代价函数的偏导数:代价函数我们之前已经知道怎么求了,现在只需要求代价函数的偏导数即可。采用如下方法,先进行前向传播算法,然后再进行反向传播算法(BackpropagationAlgorithm),反向传播算法与前向传播算法方向相反,它用来求代价函数的偏导数。具体过程看下图:用δ作为误差,计算方法为:有时我们在运用反向传播算法时会遇到bu
- 中国各地级市的海拔标准差
小王毕业啦
大数据算法大数据人工智能社科数据
海拔标准差是衡量地理测量准确性的重要指标,它通过计算特定地点的海拔测量值与平均海拔之间的偏差来评估数据的可靠性。较小的标准差意味着测量结果较为一致,而较大的标准差则可能指出数据的波动性或测量误差。计算方法海拔标准差的计算遵循以下公式:\text{标准差}=\sqrt{\frac{1}{N}\sum(\text{海拔数据}-\text{平均海拔})^2}标准差=N1∑(海拔数据−平均海拔)2其中:N
- 计算机视觉之 GSoP 注意力模块
Midsummer-逐梦
计算机视觉(CV)深度学习机器学习人工智能
计算机视觉之GSoP注意力模块一、简介GSopBlock是一个自定义的神经网络模块,主要用于实现GSoP(GlobalSecond-orderPooling)注意力机制。GSoP注意力机制通过计算输入特征的协方差矩阵,捕捉全局二阶统计信息,从而增强模型的表达能力。原论文:《GlobalSecond-orderPoolingConvolutionalNetworks(arxiv.org)》二、语法和
- 基于示例详细讲解模型PTQ量化的步骤(含代码)
LQS2020
卷积神经网络python
详细探讨模型PTQ量化每个步骤,涉及更多的技术细节和实际计算方法,以便更好地理解PTQ(Post-TrainingQuantization,训练后量化)的全过程。1.模型训练我们假设已经训练了一个卷积神经网络(CNN),例如VGG-16。训练完成后,我们得到了一个以32位浮点数表示的模型权重和激活值。2.收集统计信息在量化之前,我们需要从模型中收集统计信息,以帮助确定量化的参数。收集权重和激活的统
- 盒子滤波(BOX FILTER)方框滤波学习笔记
Hilary煜
学习笔记matlab数据结构
功能:在给定的滑动窗口大小下,对每个窗口内的像素值进行快速相加求和。应用:图像的局部矩形内像素的和、平方和、均值、方差等特征也可以用类似Haar特征的计算方法来计算Haar特征是一种用于物体识别的数字图像特征,特别是在人脸检测领域中得到了广泛应用。Haar特征得名于其与原始的Haar小波变换在计算方式上的相似性。这种特征通过计算图像中相邻矩形区域的像素强度差来捕捉图像的某些特性,如边缘、线条和中心
- EXCEL 十进制角度转换为度分秒格式
happybubbles
excel算法
写篇比较简单的文章,大家都不屑一顾的问题,但希望有人能够用上。最近同事用到使用EXCEL将十进制角度转度分秒,找我帮忙,网上搜罗一下,大多是度分秒转为十进制的计算方法,偶有这种算法,还要判断度的位数,如30°一个算法,130°又一个算法。且精度只能精确到秒的个位,对于测量坐标转换来说,远远不够。几经演算,反过来在同事的帮助下,写了一个通用的计算公式,可以精确得计算出结果,如下:fx=TEXT(IN
- 高数知识补充----矩阵、行列式、数学符号
chxin14016
笔记高数算法线性代数
矩阵计算参考链接:矩阵如何运算?——线性代数_矩阵计算-CSDN博客矩阵计算:【前找行,后找列,相乘相加】。行列式计算参考链接:实用的行列式计算方法——线性代数(det)_det线性代数-CSDN博客参考链接:行列式的计算方法(含四种,看完就会!)-CSDN博客一、对角线法▍以三阶行列式为例:①将第一、二列平移到行列式右侧②如图做出六条斜对角线③对角线上的元素相乘,红色相加的和减去蓝色相加的和D3
- 家里如何选购空调?购买空调需要注意哪些方面?
高省APP
一,家用空调怎样选1,选择匹数,卧室通常用挂机,挂机的型号有一匹的,也就是26的型号,1.5匹和大1.5匹的也就我们通常说的32和35。2,怎样挑选匹数,这还要看房间面积大小和房子的朝向,例如;西晒,层高,顶层和自建房等,这都和选择匹数有很大关系,3,选择匹数其实也不用那么神秘,也不用复杂公式,说的简单易懂,也方便理解,那就用房间面积乘以2的计算方法,例如:房间面积13平方米乘2就买26的,也就是
- 【Unity3D与23种设计模式】策略模式(Strategy)
林尧彬
设计模式游戏
GoF中定义:“定义一组算法,并封装每个算法,让它们之间可以彼此交换使用。策略模式让这些算法在客户端使用它们时能更加独立。”游戏开发过程中不同的角色会有不同的属性计算方法初级解决方法便是:ifelse,不够再来几个ifelse高级点儿的就用switchcase配合enum对于小型项目或者快速开发验证用的项目而言,这么做是没问题的但是开发规模或产品化项目时,最好还是选择策略模式在策略模式中,算法中的
- PCL 点云ISS关键点提取算法
自动驾驶探索站
C++点云处理基础教程PCL特征提取关键点提取
目录一、概述二、代码示例三、运行结果结果预览接上篇Python点云ISS关键点提取算法一、概述点云ISS关键点(IntrinsicShapeSignatures):利用点云中每个点的局部邻域的协方差矩阵来分析局部几何结构。协方差矩阵的特征值可以揭示局部几何形状的显著性。通过筛选出特征值之间具有显著差异的点,ISS算法能够识别出关键点。参考文献:《IntrinsicShapeSignatures:A
- echarts瀑布图_一种基于阶梯瀑布图的数据计算方法与流程
孤独凤凰战士
echarts瀑布图
本发明涉及数据分析技术领域,具体地说是一种基于阶梯瀑布图的数据计算方法。背景技术:Echarts是一个纯Javascript的图表库,可以流畅的运行在PC和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,Safari等),底层依赖轻量级的Canvas类库ZRender,提供直观,生动,可交互,可高度个性化定制的数据可视化图表。ECharts提供了常规的折线
- 什么是C125阶段弱于大盘选股指标?
股票
C125阶段弱于大盘选股指标是一种常用的股票选股指标,它的计算方法如下:C125选股指标的公式:C125=(现阶段股价-上一个交易日收盘价)/上一个交易日收盘价*100其中,C125表示当前阶段的选股指标,上一个交易日收盘价是指前一个交易日的收盘价,现阶段股价是指当前交易日的收盘价。计算出C125指标后,如果该指标的值大于0,则表示当前股票的走势比大盘表现更好;如果该指标的值小于0,则表示当前股票
- 【机器学习】初学者经典案例(随记)
听忆.
机器学习人工智能数据挖掘深度学习语言模型
边走、边悟迟早会好一、概念机器学习是一种利用数据来改进模型性能的计算方法,属于人工智能的一个分支。它旨在让计算机系统通过经验自动改进,而不需要明确编程。类型监督学习:使用带标签的数据进行训练,包括分类(如垃圾邮件检测)和回归(如房价预测)。无监督学习:使用不带标签的数据进行训练,包括聚类(如客户细分)和降维(如主成分分析)。强化学习:通过与环境的交互学习策略,以最大化累积奖励(如AlphaGo)。
- python绘制二维正态分布概率密度图(2d,3d)
马鹿91
pythonnumpy
importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.statsimportmultivariate_normal#定义均值和协方差矩阵mean=np.array([0,0])covariance=np.array([[1,0.5],[0.5,1]])#创建一个网格x,y=np.meshgrid(np.linspace(-3,3,500),np.
- ADL腾落指标——Σ(上涨家数-下跌家数)
浮云花心
ADL指标中文名:ADL指标计算方法:Σ(上涨家数-下跌家数)领域:股市反应:股市大势的走向与趋势计算公式腾落指标(ADL)=Σ(上涨家数-下跌家数)计算原理ADL指标是以股票每天上涨和下跌的家数作为计算和观察的对象,借此了解股市的人气的兴衰,探测大势内在的动量是强势还是弱势,从而研判股市未来动向的技术指标。它是将在该市场上上市交易的所有股票家数中,每日上涨的股票家数减去下跌股票家数所得到的余额的
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1