- 从 DeepSeek 到 AI 工具箱:Websoft9 应用托管平台赋能高校教学与科研
人工智能deepseek
从DeepSeek到AI工具箱:Websoft9应用托管平台赋能高校教学与科研人工智能技术的快速发展正在重塑高校的教学与科研生态。从智能教学辅助到跨学科研究,AI工具的应用场景不断扩展,而技术落地的复杂性也带来新的挑战。在这一背景下,如何将大模型能力与多样化AI工具无缝整合,构建安全、易用的科研教学环境,成为高校数字化转型的关键命题。一、高校智能化转型的三大痛点技术门槛高•AI工具部署依赖专业运维
- 聊聊关于Python与人工智能那些事
小G-biu-
python人工智能tensorflow
Python与人工智能:介绍Python在人工智能方面的应用Python是一种广泛使用的编程语言,也是人工智能领域中最受欢迎的语言之一。Python提供了许多用于构建和训练人工智能模型的库和框架。本文将介绍一些常见的人工智能技术以及Python在这些技术中的应用。OpenAIOpenAI是一个非营利组织,旨在推动人工智能的发展并促进其对人类的利益。OpenAI通过开发人工智能技术、研究人工智能的影
- 获取网站流量的方法有哪些?
liuliangpuzi
互联网流量运营数据搜索引擎百度大数据
不同流量源的比例反映了网站所有者不同的管理策略和网站的发展阶段。那么,网站流量来源都有哪些?接下来小编就跟大家浅析下网站流量来源的三大途径,一起来看看吧!1、直接访问来源搜索引擎源和外部链源依赖于外部,因此通常存在较大的不确定性,如搜索引擎算法调整、业务模型调整、策略监管等,这可能会使网站的流量从每天数十万IP急剧下降到数千。对于小型商业站来说,从搜索引擎获取流量是一种更经济实惠、廉价的选择,但对
- Matlab基于BP神经网络与NSGA-II的多目标工艺参数优化方法
天天酷科研
工艺参数优化matlab神经网络工艺参数优化
Matlab基于BP神经网络与NSGA-II的多目标工艺参数优化方法一、方法原理与框架BP神经网络的作用BP神经网络通过建立工艺参数与目标性能(如翘曲变形、收缩率、硬度等)之间的非线性映射关系,作为代理模型替代复杂的物理仿真或实验。其优势在于:能够处理多输入-多输出的复杂非线性关系,例如激光功率、扫描速度与熔覆层性能的关联。在注塑成型中,预测体积收缩率和翘曲变形的相对误差可控制在5%以内。通过正交
- 复旦:过程奖励优化多模态推理
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:VisualPRM:AnEffectiveProcessRewardModelforMultimodalReasoning来源:arXiv,2503.10291摘要我们引入了VisualPRM,这是一种具有8B参数的高级多模态过程奖励模型(PRM),它通过Best-of-N(BoN)评估策略提高了现有多模态大型语言模型(MLLM)在不同模型尺度和族之间的推理能力。具体来说,我们的模型提高了三
- 使用 TensorFlow 进行图像处理:深度解析卷积神经网络(CNN)
一碗黄焖鸡三碗米饭
人工智能前沿与实践tensorflow图像处理cnn人工智能机器学习pythonai
目录使用TensorFlow进行图像处理:深度解析卷积神经网络(CNN)1.什么是卷积神经网络(CNN)?CNN的基本结构为什么CNN适合图像处理?2.使用TensorFlow构建CNN2.1环境准备2.2加载并预处理MNIST数据集2.3构建CNN模型2.4编译和训练模型2.5评估模型3.CNN的优化与改进3.1使用数据增强3.2调整网络结构4.CNN在其他图像处理任务中的应用5.总结参考文献在
- FastAPI测试策略:参数解析单元测试
qcidyu
文章归档异常传播验证依赖注入测试请求模拟技术测试覆盖率优化Pydantic验证测试单元测试策略参数解析测试
扫描二维码关注或者微信搜一搜:编程智域前端至全栈交流与成长探索数千个预构建的AI应用,开启你的下一个伟大创意第一章:核心测试方法论1.1三层测试体系架构#第一层:模型级测试deftest_user_model_validation():withpytest.raises(ValidationError):User(age=-5)#第二层:依赖项测试deftest_auth_dependency()
- AI写作平台推荐:AnKo免费AI助力高效写作!
zhongken259
人工智能AI编程aiAI平台AI软件AI写作AI网站
AI写作平台推荐:AnKo免费AI助力高效写作!在如今的创作领域,AI写作平台推荐已经成为许多创作者的首选。尤其是AnKo深受用户喜爱。AI写作平台推荐AnKo,不仅能提升写作效率,还能实现精准创作,真是不可错过!AI写作平台推荐:独特优势AI写作平台推荐AnKo,凭借其多模型AI聚合工具,能够提供更加精准和个性化的写作服务。AI写作平台推荐AnKo,不同于其他平台,它能根据创作者的需求灵活调整创
- 量化投资中的投资组合风险溢价模型
云策量化
量化投资量化交易量化软件量化炒股QMT量化交易PTrade量化软件量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》量化投资中的投资组合风险溢价模型在量化投资的世界里,风险和回报总是如影随形。投资者们就像是在大海中航行的船长,既要寻找宝藏,又要避开暗礁。今天,我们就来聊聊量化投资中的一个关键工具——投资组合风险溢价模型,它就像是船长的罗盘,帮助我们在风险和回报之间找到平衡。引言:风险与回报的舞蹈在量化投资中,我们经常听到“风险溢价”这个词。
- Python逆向爬取Tik Tok,MsToken,X-Bogus以及signature
才华是浅浅的耐心
pythonjavascript前端
自5月起,抖音正式开放Web接口,并不断升级风控机制。从最初的_signature参数,到增加滑块验证,再到如今的JSVM混淆处理,以及mstoken和x-bougs等参数的引入。分析发现,部分国内接口仅需提供Cookie即可访问,无需额外验签,而获取Cookie的方式多种多样,其中利用OpenCV识别滑块验证码是一种简单可行的方法。相比之下,TikTok的接口无需Cookie,但对签名的校验更加
- 【3D模型】【游戏开发】【Blender】Blender模型分享-狮头木雕附导入方法
踏雪无痕老爷子
资源介绍3dblender
导入方法:[Blender]如何导入包含纹理的.blend模型文件在3D建模和渲染工作中,Blender是一款功能强大的免费开源软件。很多时候,我们需要导入.blend后缀的模型文件,同时确保纹理(textures)文件夹中的贴图能够正确加载。本文将介绍详细的导入步骤以及可能遇到的问题和解决方案。1.直接打开.blend文件如果你的.blend文件是一个完整的工程文件,包含了模型和纹理,直接打开即
- 实战LLM强化学习——使用GRPO(DeepSeek R1出圈算法)
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
引言近年来,深度强化学习(DRL)已经成为解决复杂决策问题的一个强有力工具,尤其是在自然语言处理(NLP)领域的广泛应用。通过不断优化决策策略,DRL能在大量数据中学习最佳行为,尤其是大型语言模型(LLM)在任务中展现出的巨大潜力。然而,随着模型规模的扩大和任务复杂性的增加,传统的强化学习算法开始暴露出训练效率低、收敛速度慢等问题。为了解决这些挑战,DeepSeek公司提出了一个新的强化学习算法—
- AI学习指南RAG篇(24)-RAGFlow的社区与开源贡献
俞兆鹏
AI学习指南人工智能
一、引言RAGFlow是一款基于深度文档理解的开源RAG(Retrieval-AugmentedGeneration,检索增强生成)引擎,旨在解决现有RAG技术在数据处理和生成答案方面的挑战。RAGFlow通过结合大型语言模型(LLMs)的强大生成能力和高效的信息检索系统,为用户提供了一种全新的交互体验。本文将鼓励读者参与到RAGFlow的开源社区中,共同推动技术的发展和创新。二、RAGFlow的
- 量子密码学技术架构解析与程序员视角
算法
量子计算威胁模型分析传统公钥密码体系(RSA/ECC)的安全假设基于:大数分解问题的计算复杂度(RSA)椭圆曲线离散对数问题(ECC)有限域离散对数问题(DSA)Shor算法的时间复杂度为O((logN)^3),当量子比特数达到阈值时:2048位RSA可在8小时内破解(理论值)ECC-256的破解时间将降至多项式级别Grover算法对对称密码的影响:AES-256的有效安全性降至2^128哈希函数
- 有了大模型为何还需要Agent智能体
全栈你个大西瓜
人工智能人工智能AIAgentAgent智能体Agent原理
一、什么是Agent?Agent(智能体)是一种能感知环境、自主决策、执行动作的智能实体,当它与大语言模型(如通义千问QWen、GPT)结合时,形成一种**“增强型AI系统”**。其核心架构如下:大脑(LLM):负责语言理解、逻辑推理、知识问答等认知任务。感官(工具链):通过API、传感器或数据库获取实时数据(如天气、股价)。手脚(执行器):调用外部工具完成任务(如发送邮件、控制智能家居)。记忆(
- Manus详细介绍
accurater
c++算法笔记深度学习人工智能神经网络
第一章Manus的技术背景与核心突破初识ManusAI1.1什么是Manus?Manus是由中国团队Monica.im于2025年3月推出的全球首款通用型AI智能体(AIAgent)。其名称源自拉丁语“MensetManus”,意为“手脑并用”,强调将大模型的逻辑推理能力转化为实际生产力。与传统的对话式AI(如ChatGPT、DeepSeek)不同,Manus的核心定位是“执行型助手”,能够自主完
- 21.7 ChatGLM3-6B私有化部署实战:2小时快速搭建200 QPS高可用模型服务
少林码僧
AI大模型应用实战专栏人工智能gpt语言模型
ChatGLM3-6B私有化部署实战:2小时快速搭建200QPS高可用模型服务ChatGLM3-6B私有化部署实战指南关键词:ChatGLM3-6B部署,私有化模型服务,性能优化,容器化部署,API服务封装1.部署环境准备与硬件规划ChatGLM3-6B私有化部署需要充分考虑算力资源与软件生态的适配性,以下是推荐配置方案:
- 通过LoRA(Low-Rank Adaptation)低秩矩阵分解来高效微调权重变化
背太阳的牧羊人
模型微调矩阵线性代数深度学习人工智能自然语言处理LoRA
LoRA的原理LoRA的核心思想是用低秩矩阵分解来建模参数的变化,而不是直接调整整个权重矩阵。这种方法通过减少微调的参数数量来提高训练效率。基本公式假设预训练模型的某一层权重为(W\in\mathbb{R}^{d\timesk}),LoRA的调整方式是:[W’=W+\DeltaW]其中(\DeltaW)是调整后的权重变化。LoRA假设权重变化(\DeltaW)的秩较低,可以表示为两个低秩矩阵的乘积
- centos7输入python -m bitsandbytes报错CUDA Setup failed despite GPU being available. Please run the follo
小太阳,乐向上
python开发语言
在centos7.9系统中安装gpu驱动及cuda,跑大模型会报错,提示让输入python-mbitsandbytes依然报错:CUDASETUP:Loadingbinary/usr/local/python3/lib/python3.9/site-packages/bitsandbytes/libbitsandbytes_cuda117.so.../lib64/libstdc++.so.6:ve
- glm-4v-9b 踩坑(4-bit量化,bitsandbytes 异常)
phynikesi
pytorchglm-4v-9b踩坑bitsandbytes异常
前言本文只分享了自己在体验glm-4v-9b过程中遇到的问题,没有涉及对模型本身以及更多问题的分析,大家可先看问题描述,再决定是否看下去。实验平台:linux系统,RTXA4000。嫌麻烦的可以直接到文未看结论。问题描述16g显卡难以加载模型bitsandbytes异常,模型无法运行加载问题本人设备有限,引用一下别人完整加载模型的数据,大约18.9g。用16g显卡直接报OOM,用8-bit加载还是
- 大模型——模型上下文协议 (MCP)
不二人生
大模型人工智能大模型
大模型——模型上下文协议(MCP)我一直在尝试一种新技术,通过Anthropic提出的一种新兴的开放标准——模型上下文协议(MCP),将知识和功能插入到像聊天这样的AI应用程序中。现在还处于早期阶段,但它已经具有一定的势头。我一直在尝试一种新技术,通过Anthropic提出的一种新兴的开放标准——模型上下文协议(MCP),将知识和功能插入到像聊天这样的AI应用程序中。现在还处于早期阶段,但它已经具
- 神经网络基础之正则化
硬水果糖
人工智能神经网络人工智能机器学习
引言:正则化(Regularization)是机器学习中一种用于防止模型过拟合技术。核心思想是通过在模型损失函数中添加一个惩罚项(PenaltyTerm),对模型的复杂度进行约束,从而提升模型在新数据上的泛化能力。一、正则化目的防止过拟合:当模型过于复杂(例如神经网络层数过多、参数过多)时,容易在训练数据上“记忆”噪声或细节,导致在测试数据上表现差。简化模型:正则化通过限制模型参数的大小或数量,迫
- 【阿里百炼大模型-使用】
y_dd
深度学习语言模型人工智能
参照阿里云百炼网址服务配置开通服务如果没有注册阿里云账号,先注册一个https://www.aliyun.com/?spm=5176.account-console-pc.console-base_top-nav.dlogo.10d24bab70FmIm,注册完毕用它登录阿里云百炼,然后开通服务(即使是免费的开元模型也需要开通)获取API-key在账户这里选择API-KEY,进入这个页面,创建一个
- 21.11 《ChatGLM3-6B+Gradio工业级落地:多模态交互+60%性能优化,手把手实现生产部署》
少林码僧
AI大模型应用实战专栏人工智能gpt语言模型性能优化交互
《ChatGLM3-6B+Gradio工业级落地:多模态交互+60%性能优化,手把手实现生产部署》关键词:ChatGLM3-6B应用开发,Gradio界面集成,模型交互优化,Web服务容器化,多模态输入支持使用Gradio赋能ChatGLM3-6B图形化界面通过Gradio实现大模型服务的可视化交互,是生产级AI应用落地的关键环节。本节将深入解析如何构建适配ChatGLM3-6B的工业级交互界面。
- DeepSeek智能政务大脑:城市服务知识库构建全指南——从RAG架构到民生场景落地实践
Coderabo
DeepSeekR1模型企业级应用政务架构
DeepSeek赋能城市智慧升级:基于RAG架构的市民服务智能知识库构建全解一、需求分析与技术选型1.1市民服务场景需求市民服务智能知识库需要解决政务咨询效率低下、专业术语难理解、多轮对话能力弱等核心问题。系统需具备:自然语言理解能力(NLU)异构知识整合能力政策法规精准解读能力多轮对话上下文管理应急服务联动机制1.2DeepSeek技术栈选择基于DeepSeek-Large语言模型构建核心系统,
- JVM技术八股文
小麟School
JVMjvmjava开发语言
JVM面试八股文,整理了出来。排版不太好!目录JVM入门部分为什么要学习JVM?你了解哪些JVM产品?JVM的构成有哪几部分?JVM类加载部分你知道哪些类加载器?为什么需要多个类加载器?什么是双亲委派类加载模型?双亲委派方式加载类有什么优势、劣势?描述一下类加载时候的基本步骤是怎样的?什么情况下会触发类的加载?类加载时静态代码块一定会执行吗?如何理解类的主动加载和被动加载?为什么要自己定义类加载器
- thinkphp5模型查询数据库,查出来的字段直接修改成另外的名字
知码客
个人随笔thinkphp5php开发
在ThinkPHP5中,如果你希望在查询数据库时将返回的字段名直接修改为其他名称,可以通过以下几种方式实现:方法1:使用field方法指定字段别名在查询时通过field方法直接为字段指定别名(使用AS关键字)。示例代码://使用Db类查询$result=Db::name('user')->field('idASuser_id,nameASfull_name')->select();//使用模型查询
- 史上最全JVM面试八股文合集
Java小海.
面试java职场和发展程序人生后端
简述JVM内存模型线程私有的运行时数据区:程序计数器、Java虚拟机栈、本地方法栈。线程共享的运行时数据区:Java堆、方法区。简述程序计数器程序计数器表示当前线程所执行的字节码的行号指示器。程序计数器不会产生StackOverflowError和OutOfMemoryError。简述虚拟机栈Java虚拟机栈用来描述Java方法执行的内存模型。线程创建时就会分配一个栈空间,线程结束后栈空间被回收。
- 华为云在工业数字化方面的优势
九河智造云
华为云人工智能云计算制造
华为云在工业数字化领域展现出全方位的优势,为制造业的转型升级提供了强大的助力。一、专业的数字化诊断治理服务华为云的数字化诊断治理专家服务为企业提供全面的深度诊断、成熟度评估、产业升级分析、创新治理和专家咨询等服务。其诊断模型参考国际国内标准,结合多体系理论与华为自身实践,能够精准定位企业运营中的问题点,并提供针对性的解决方案。同时,华为云拥有丰富的诊断团队和案例,基于全国180余个赋能云创新中心、
- deepseek具体应用场景
ahyouxiang
人工智能
DeepSeek的具体应用场景非常广泛,涵盖了多个领域和行业。以下是基于证据的详细总结:金融领域DeepSeek在金融领域的应用表现突出,例如通过其大语言模型(如DeepSeekLLM67Bt)提供数学、逻辑推理等能力,帮助金融机构提升服务效率。此外,DeepSeek还被应用于智能安全体产品中,通过安全大模型实现个性化开发和优化。医疗领域在医疗领域,DeepSeek的技术被用于辅助诊断和患者记录管
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多