“我这破笔记本的显卡竟然支持cuda,可以,很强!”
跳过废话,直接看正文
继续神经网络的学习,这次按照speeding-up-your-neural-network-with-theano-and-the-gpu教程完成了theano版的神经网络,并用gpu进行加速。
因为比较忙也比较懒的原因,这里就简单列一下代码,环境的配置改天有空再写吧,没空就算了,比较关键的几个就是Anaconda2 、CUDA7.5、vs2013
import theano
import time
import theano.tensor as T
import numpy as np
from sklearn import datasets, linear_model
import matplotlib.pyplot as plt
class NNModel:
def __init__(self, layers, epsilon = 0.01, reg_lambda = 0.01):
self.layers = layers # number of nodes in each layer
self.epsilon = np.float32(epsilon) # learning rate for gradient descent
self.reg_lambda = np.float32(reg_lambda) # regularization strength
# Initialize the parameters (W and b) to random values. We need to learn these.
#np.random.seed(int(time.time()) % 1000)
np.random.seed(0)
hidden_layer_num = len(layers) - 1
if hidden_layer_num != 2:
print 'only support 2 hidden layer'
exit(0)
self.W1 = theano.shared(np.random.randn(layers[0], layers[1]).astype('float32'))
self.b1 = theano.shared(np.zeros(layers[1]).astype('float32'))
self.W2 = theano.shared(np.random.randn(layers[1], layers[2]).astype('float32'))
self.b2 = theano.shared(np.zeros(layers[2]).astype('float32'))
def train_init(self, train_X, train_y):
num_class = np.max(train_y) + 1
num_examples = len(train_X)
train_y_onehot = np.eye(num_class)[train_y]
# GPU NOTE: Conversion to float32 to store them on the GPU!
X = theano.shared(train_X.astype('float32'))
y = theano.shared(train_y_onehot.astype('float32'))
# Forward propagation
z1 = X.dot(self.W1) + self.b1
a1 = T.tanh(z1)
z2 = a1.dot(self.W2) + self.b2
y_hat = T.nnet.softmax(z2)
#Prediction
prediction = T.argmax(y_hat, axis=1)
#Loss function
loss_reg = 1. / num_examples * self.reg_lambda / 2 * (T.sum(T.sqr(self.W1)) + T.sum(T.sqr(self.W2)))
loss = T.nnet.categorical_crossentropy(y_hat, y).mean() + loss_reg
# Gradients
dW2 = T.grad(loss, self.W2)
db2 = T.grad(loss, self.b2)
dW1 = T.grad(loss, self.W1)
db1 = T.grad(loss, self.b1)
# Note that we removed the input values because we will always use the same shared variable
# GPU NOTE: Removed the input values to avoid copying data to the GPU.
forward_prop = theano.function([], y_hat)
predict_by_train_X = theano.function([], prediction)
self.calculate_loss = theano.function([], loss)
self.gradient_step = theano.function(
[],
#profile=True,
updates=((self.W2, self.W2 - self.epsilon * dW2),
(self.W1, self.W1 - self.epsilon * dW1),
(self.b2, self.b2 - self.epsilon * db2),
(self.b1, self.b1 - self.epsilon * db1)))
# This function learns parameters for the neural network from training dataset
# - num_passes: Number of passes through the training data for gradient descent
# - print_loss: If True, print the loss every 1000 iterations
def train(self, train_X, train_y, num_passes=20000, print_loss=False):
self.train_init(train_X, train_y)
# Gradient descent. For each batch...
for i in xrange(0, num_passes):
# This will update our parameters Ws and bs!
self.gradient_step()
# Optionally print the loss.
# This is expensive because it uses the whole dataset, so we don't want to do it too often.
if print_loss and i % 1000 == 0:
print "Loss after iteration %i: %f" %(i, self.calculate_loss())
self.predict_init()
def predict_init(self):
X = T.fmatrix('X')
# Forward propagation
z1 = X.dot(self.W1) + self.b1
a1 = T.tanh(z1)
z2 = a1.dot(self.W2) + self.b2
y_hat = T.nnet.softmax(z2)
prediction = T.argmax(y_hat, axis=1)
self.predict_by_X = theano.function([X], prediction)
def predict(self, predict_X):
result = self.predict_by_X(predict_X.astype('float32'))
return result
def generate_data(random_seed, n_samples):
np.random.seed(random_seed)
X, y = datasets.make_moons(n_samples, noise=0.20)
return X, y
def visualize(X, y, model):
plt.title("nn_theano_gpu_classification")
plot_decision_boundary(lambda x:model.predict(x), X, y)
def plot_decision_boundary(pred_func, X, y):
# Set min and max values and give it some padding
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole gid
Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
plt.show()
class Config:
epsilon = 0.01 # learning rate for gradient descent
reg_lambda = 0.01 # regularization strength
layers = [2, 4, 2] # number of nodes in each layer
num_passes = 20000
print_loss = True
random_seed = 6
num_samples = 5000
X, y = generate_data(Config.random_seed, Config.num_samples)
model = NNModel(Config.layers, Config.epsilon, Config.reg_lambda)
# model.train_init(X, y)
# %timeit model.gradient_step()
start_time = time.time()
model.train(X, y, Config.num_passes, Config.print_loss)
end_time = time.time()
print 'training time : ' + str(end_time - start_time)
visualize(X, y, model)
#model.gradient_step.profile.summary()
更多代码参考github
没有后记