Tensorflow 使用自己的数据集(翻译官网)

在Tensorflow object_detection上使用自己的数据集

准备输入

使用你自己的数据集在tf的目标检测API,你必须转换数据集到TFRecord flie 形式。这个文档主要讲解如何写一个脚本去生成TFRecord flie。

图片标记

每一个数据集被要求有一个图片标记和它联系在一起。这个图片标记定义了一个从行层次名称到整数层次id。(string class names, integer class Ids)这个图片标记应该是StringIntLabelMap text protobuf。样本标记可以被检测在object_detection/data。这个图片标记应该一直从Id1开始。

数据要求

对于每一个数据集中的图片,你应该有下述的信息
1. Jpeg或者png格式的RGB图片。
2. 一个包含边界信息的列表。每一个边界应该包括;A.一个边界坐标定义了4个float 格式的数字[ymin,xmin,ymax,xmax]。注意我们储存这个归一化的坐标(x/width,y/height)在tfrecord数据集上。B.物品的标签在个边界上。
举个栗子:

item {
  id: 1
  name: 'Cat'
}


item {
  id: 2
  name: 'Dog'
}

我们能够使用下面的代码生成一个tf.Example proto 给这个图片:

def create_cat_tf_example(encoded_cat_image_data):
   """Creates a tf.Example proto from sample cat image.

  Args:
    encoded_cat_image_data: The jpg encoded data of the cat image.

  Returns:
    example: The created tf.Example.
  """

  height = 1032.0
  width = 1200.0
  filename = 'example_cat.jpg'
  image_format = b'jpg'

  xmins = [322.0 / 1200.0]
  xmaxs = [1062.0 / 1200.0]
  ymins = [174.0 / 1032.0]
  ymaxs = [761.0 / 1032.0]
  classes_text = ['Cat']
  classes = [1]

  tf_example = tf.train.Example(features=tf.train.Features(feature={
      'image/height': dataset_util.int64_feature(height),
      'image/width': dataset_util.int64_feature(width),
      'image/filename': dataset_util.bytes_feature(filename),
      'image/source_id': dataset_util.bytes_feature(filename),
      'image/encoded': dataset_util.bytes_feature(encoded_image_data),
      'image/format': dataset_util.bytes_feature(image_format),
      'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
      'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
      'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
      'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
      'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
      'image/object/class/label': dataset_util.int64_list_feature(classes),
  }))
  return tf_example

转换脚本提纲
一个使用自己的数据集的脚本大概会像这种格式

import tensorflow as tf

from object_detection.utils import dataset_util


flags = tf.app.flags
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS


def create_tf_example(example):
  # TODO(user): Populate the following variables from your example.
  height = None # Image height
  width = None # Image width
  filename = None # Filename of the image. Empty if image is not from file
  encoded_image_data = None # Encoded image bytes
  image_format = None # b'jpeg' or b'png'

  xmins = [] # List of normalized left x coordinates in bounding box (1 per box)
  xmaxs = [] # List of normalized right x coordinates in bounding box
             # (1 per box)
  ymins = [] # List of normalized top y coordinates in bounding box (1 per box)
  ymaxs = [] # List of normalized bottom y coordinates in bounding box
             # (1 per box)
  classes_text = [] # List of string class name of bounding box (1 per box)
  classes = [] # List of integer class id of bounding box (1 per box)

  tf_example = tf.train.Example(features=tf.train.Features(feature={
      'image/height': dataset_util.int64_feature(height),
      'image/width': dataset_util.int64_feature(width),
      'image/filename': dataset_util.bytes_feature(filename),
      'image/source_id': dataset_util.bytes_feature(filename),
      'image/encoded': dataset_util.bytes_feature(encoded_image_data),
      'image/format': dataset_util.bytes_feature(image_format),
      'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
      'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
      'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
      'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
      'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
      'image/object/class/label': dataset_util.int64_list_feature(classes),
  }))
  return tf_example


def main(_):
  writer = tf.python_io.TFRecordWriter(FLAGS.output_path)

  # TODO(user): Write code to read in your dataset to examples variable

  for example in examples:
    tf_example = create_tf_example(example)
    writer.write(tf_example.SerializeToString())

  writer.close()


if __name__ == '__main__':
  tf.app.run()

注意:你可能会注意到附加的领域在其他的数据集。他们现在不被使用或者一部分不被使用在这个api上。

附录

  1. https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md
  2. https://zhuanlan.zhihu.com/p/27469690
    1.为官网原文;2.为工程师的操作细节。

你可能感兴趣的:(深度学习,tensorflow)