传送门
看到出现次数自然地考虑莫队。
但是发现如果需要删除并动态维护答案的话,则要用一个堆来维护答案,增加了一个\(log\)。但是加入操作却没有这个\(log\),所以我们考虑避免删除操作。
分块,设\(l_i,r_i\)表示第\(i\)个块的左右端点,设\(f_{i,j}\)表示区间\([l_i,r_j]\)的答案,可以枚举\(i\)然后枚举\(j\)做到\(O(n\sqrt{n})\);
接下来将询问离线,对于每一组询问如果左右端点距离\(\leq 2\sqrt{n}\)则暴力计算答案,否则考虑其覆盖的整块\([p,q]\),则通过莫队将\([l_p,r_q]\)内所有数的出现次数统计下来,然后暴力将零散块的贡献进入出现次数数组并更新当前答案,最后把出现次数数组还原即可。复杂度\(O(n\sqrt{n})\)。
#include
using namespace std;
int read(){
int a = 0; char c = getchar(); bool f = 0;
while(!isdigit(c)){f = c == '-'; c = getchar();}
while(isdigit(c)){
a = a * 10 + c - 48; c = getchar();
}
return f ? -a : a;
}
const int _ = 1e5 + 7 , S = sqrt(_) , T = _ / S + 10;
long long mx[T][T] , ans[_]; int arr[_] , tmp[_] , lsh[_] , N , Q , num;
struct query{
int l , r , id , tL , tR;
query(int _l , int _r , int _id){
l = _l; r = _r; id = _id; tL = (l / S + 1) * S; tR = (r / S) * S - 1;
}
friend bool operator <(query A , query B){
return A.tL < B.tL || A.tL == B.tL && A.tR < B.tR;
}
}; vector < query > qry;
void add(int x){++tmp[arr[x]];} void del(int x){--tmp[arr[x]];}
signed main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
freopen("out","w",stdout);
#endif
N = read(); Q = read();
for(int i = 0 ; i < N ; ++i) arr[i] = lsh[i] = read();
sort(lsh , lsh + N); num = unique(lsh , lsh + N) - lsh - 1;
for(int i = 0 ; i < N ; ++i) arr[i] = lower_bound(lsh , lsh + num + 1 , arr[i]) - lsh;
for(int i = 0 ; i < N ; i += S){
long long now = 0;
for(int j = i ; j < N ; ++j){
now = max(now , 1ll * ++tmp[arr[j]] * lsh[arr[j]]);
if(j % S == S - 1 || j + 1 == N) mx[i / S][j / S] = now;
}
memset(tmp , 0 , sizeof(tmp));
}
for(int i = 1 ; i <= Q ; ++i){
int p = read() - 1 , q = read() - 1; long long now = 0;
if(q - p <= 2 * S){
for(int k = p ; k <= q ; ++k)
now = max(now , 1ll * ++tmp[arr[k]] * lsh[arr[k]]);
for(int k = p ; k <= q ; ++k) tmp[arr[k]] = 0;
ans[i] = now;
}
else qry.push_back(query(p , q , i));
}
sort(qry.begin() , qry.end()); int L = 0 , R = -1;
for(auto t : qry){
while(R < t.tR) add(++R); while(L > t.tL) add(--L);
while(R > t.tR) del(R--); while(L < t.tL) del(L++);
long long now = mx[L / S][R / S];
for(int i = L - 1 ; i >= t.l ; --i)
now = max(now , 1ll * ++tmp[arr[i]] * lsh[arr[i]]);
for(int i = R + 1 ; i <= t.r ; ++i)
now = max(now , 1ll * ++tmp[arr[i]] * lsh[arr[i]]);
ans[t.id] = now;
for(int i = t.l ; i < L ; ++i) --tmp[arr[i]];
for(int i = t.r ; i > R ; --i) --tmp[arr[i]];
}
for(int i = 1 ; i <= Q ; ++i) printf("%lld\n" , ans[i]);
return 0;
}