【原创】(二)Linux物理内存初始化

背景

  • Read the fucking source code! --By 鲁迅
  • A picture is worth a thousand words. --By 高尔基

说明:

  1. Kernel版本:4.14
  2. ARM64处理器,Contex-A53,双核
  3. 使用工具:Source Insight 3.5, Visio

1. 介绍

让我们思考几个朴素的问题?

  1. 系统是怎么知道物理内存的?
  2. 在内存管理真正初始化之前,内核的代码执行需要分配内存该怎么处理?

我们先来尝试回答第一个问题,看过dts文件的同学应该见过memory的节点,以arch/arm64/boot/dts/freescale/fsl-ls208xa.dtsi为例:

    memory@80000000 {
        device_type = "memory";
        reg = <0x00000000 0x80000000 0 0x80000000>;
              /* DRAM space - 1, size : 2 GB DRAM */
    };

这个节点描述了内存的起始地址及大小,事实上内核在解析dtb文件时会去读取该memory节点的内容,从而将检测到的内存注册进系统。

那么新的问题又来了?Uboot会将kernel imagedtb拷贝到内存中,并且将dtb物理地址告知kernelkernel需要从该物理地址上读取到dtb文件并解析,才能得到最终的内存信息,dtb的物理地址需要映射到虚拟地址上才能访问,但是这个时候paging_init还没有调用,也就是说物理地址的映射还没有完成,那该怎么办呢?没错,Fixed map机制出现了。

第二个问题答案:当所有物理内存添加进系统后,在mm_init之前,系统会使用memblock模块来对内存进行管理。

开启探索之旅吧!

2. early_fixmap_init

简单来说,Fixed map指的是虚拟地址中的一段区域,在该区域中所有的线性地址是在编译阶段就确定好的,这些虚拟地址需要在boot阶段去映射到物理地址上。
来张图片看看虚拟地址空间:
【原创】(二)Linux物理内存初始化_第1张图片

图中fixed: 0xffffffbefe7fd000 - 0xffffffbefec00000,描述的就是Fixed map的区域。

那么这段区域中的详细一点的布局是怎样呢?看看arch/arm64/include/asm/fixmap.h中的enum fixed_address结构就清晰了,图来了:
【原创】(二)Linux物理内存初始化_第2张图片

从图中可以看出,如果要访问DTB所在的物理地址,那么需要将该物理地址映射到Fixed map中的区域,然后访问该区域中的虚拟地址即可。访问IO空间也是一样的道理,下文也会讲述到。

那么来看看early_fixmap_init函数的关键代码吧:

void __init early_fixmap_init(void)
{
    pgd_t *pgd;
    pud_t *pud;
    pmd_t *pmd;
    unsigned long addr = FIXADDR_START;              /* (1) */

    pgd = pgd_offset_k(addr);           /* (2) */
    if (CONFIG_PGTABLE_LEVELS > 3 &&
        !(pgd_none(*pgd) || pgd_page_paddr(*pgd) == __pa_symbol(bm_pud))) {
        /*
         * We only end up here if the kernel mapping and the fixmap
         * share the top level pgd entry, which should only happen on
         * 16k/4 levels configurations.
         */
        BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
        pud = pud_offset_kimg(pgd, addr);
    } else {
        if (pgd_none(*pgd))
            __pgd_populate(pgd, __pa_symbol(bm_pud), PUD_TYPE_TABLE);          /* (3) */
        pud = fixmap_pud(addr);
    }
    if (pud_none(*pud))
        __pud_populate(pud, __pa_symbol(bm_pmd), PMD_TYPE_TABLE);    /* (4) */
    pmd = fixmap_pmd(addr);
    __pmd_populate(pmd, __pa_symbol(bm_pte), PMD_TYPE_TABLE);        /* (5) */
......
}

关键点:

  1. FIXADDR_START,定义了Fixed map区域的起始地址,位于arch/arm64/include/asm/fixmap.h中;
  2. pgd_offset_k(addr),获取addr地址对应pgd全局页表中的entry,而这个pgd全局页表正是swapper_pg_dir全局页表;
  3. bm_pud的物理地址写到pgd全局页目录表中;
  4. bm_pmd的物理地址写到pud页目录表中;
  5. bm_pte的物理地址写到pmd页表目录表中;

bm_pud/bm_pmd/bm_pte是三个全局数组,相当于是中间的页表,存放各级页表的entry,定义如下:

static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;

事实上,early_fixmap_init只是建立了一个映射的框架,具体的物理地址和虚拟地址的映射没有去填充,这个是由使用者具体在使用时再去填充对应的pte entry。比如像fixmap_remap_fdt()函数,就是典型的填充pte entry的过程,完成最后的一步映射,然后才能读取dtb文件。

来一张图片就懂了,是透彻的懂了:
【原创】(二)Linux物理内存初始化_第3张图片

3. early_ioremap_init

如果在boot早期需要操作IO设备的话,那么ioremap就用上场了,由于跟实际的内存管理关系不太大,不再太深入的分析。
【原创】(二)Linux物理内存初始化_第4张图片

简单来说,ioremap的空间为7 * 256K的区域,保存在slot_vir[]数组中,当需要进行IO操作的时候,最终会调用到__early_ioremap函数,在该函数中去填充对应的pte entry,从而完成最终的虚拟地址和物理地址的映射。

4. memblock

上文讲的内容都只是铺垫,为了能正确访问DTB文件并且解析得到物理地址信息。从入口到最终添加的调用过程如下图:
【原创】(二)Linux物理内存初始化_第5张图片

所以,这个章节的重点就是memblock模块,这个是早期的内存分配管理器,我不禁想起了之前在Nuttx中的内存池实现了,细节已然不太清晰了,但是框架性的思维都大同小异。

4.1 结构体

【原创】(二)Linux物理内存初始化_第6张图片

总共由三个数据结构来描述:

  • struct memblock定义了一个全局变量,用来维护所有的物理内存;
  • struct memblock_type代表系统中的内存类型,包括实际使用的内存和保留的内存;
  • struct memblock_region用来描述具体的内存区域,包含在struct memblock_type中的regions数组中,最多可以存放128个。

直接上个代码吧:

static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
#endif

struct memblock memblock __initdata_memblock = {
    .memory.regions     = memblock_memory_init_regions,
    .memory.cnt     = 1,    /* empty dummy entry */
    .memory.max     = INIT_MEMBLOCK_REGIONS,
    .memory.name        = "memory",

    .reserved.regions   = memblock_reserved_init_regions,
    .reserved.cnt       = 1,    /* empty dummy entry */
    .reserved.max       = INIT_MEMBLOCK_REGIONS,
    .reserved.name      = "reserved",

#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    .physmem.regions    = memblock_physmem_init_regions,
    .physmem.cnt        = 1,    /* empty dummy entry */
    .physmem.max        = INIT_PHYSMEM_REGIONS,
    .physmem.name       = "physmem",
#endif

    .bottom_up      = false,
    .current_limit      = MEMBLOCK_ALLOC_ANYWHERE,
};

定义的memblock为全局变量,在定义的时候就进行了初始化。初始化的时候,regions指向的也是静态全局的数组,其中数组的大小为INIT_MEMBLOCK_REGIONS,也就是128个,限制了这些内存块的个数了,实际在代码中可以看到,当超过这个数值时,数组会以2倍的速度动态扩大。

初始化完了后,大体是这个样子的:
【原创】(二)Linux物理内存初始化_第7张图片

4.2 memblock_add/memblock_remove

memblock子模块,基本的逻辑都是围绕内存的添加和移除操作来展开,最终是通过调用memblock_add_range/memblock_remove_range来实现的。

  • memblock_add_range
    【原创】(二)Linux物理内存初始化_第8张图片

图中的左侧是函数的执行流程图,执行效果是右侧部分。右侧部分画的是一个典型的情况,实际的情况可能有多种,但是核心的逻辑都是对插入的region进行判断,如果出现了物理地址范围重叠的部分,那就进行split操作,最终对具有相同flagregion进行merge操作。

  • memblock_remove_range
    该函数执行的一个典型case效果如下图所示:
    【原创】(二)Linux物理内存初始化_第9张图片

假如现在需要移除掉一片区域,而该区域跨越了多个region,则会先调用memblock_isolate_range来对这片区域进行切分,最后再调用memblock_isolate_range对区域范围内的region进行移除操作。

当调用memblock_alloc函数进行地址分配时,最后也是调用memblock_add_range来实现的,申请的这部分内存最终会添加到reserved类型中,毕竟已经分配出去了,其他人也不应该使用了。

5. arm64_memblock_init

当物理内存都添加进系统之后,arm64_memblock_init会对整个物理内存进行整理,主要的工作就是将一些特殊的区域添加进reserved内存中。函数执行完后,如下图所示:
【原创】(二)Linux物理内存初始化_第10张图片

  • 其中浅绿色的框表示的都是保留的内存区域, 剩下的部分就是可以实际去使用的内存了。

物理内存大体面貌就有了,后续就需要进行内存的页表映射,完成实际的物理地址到虚拟地址的映射了。

那就待续吧。

【原创】(二)Linux物理内存初始化_第11张图片

你可能感兴趣的:(【原创】(二)Linux物理内存初始化)