函数的理解
面向过程:根据业务逻辑从上到下垒代码
函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可
函数作用是你的程序有良好的扩展性、复用性。
同样的功能要是用3次以上的话就建议使用函数。
特殊理解:
函数可以理解为一个一个的功能块,你把一个大的功能拆分成一块一块的,用某项功能的时候就去调用某个功能块即可!
函数可以理解为:乐高积木,给你一块一块的,你可以用这些积木块组成你想要的任何功能!
函数可以调用函数!主函数的作用就是把函数进行串联、调用!函数本身是不能自己执行的如果不调用就永不执行!
#---------------------------------------------------
def func1():
pass
def func2():
pass
def func3():
pass
def func4():
pass
func1()
func2()
func3()
func4()
if __name__ == '__main__': #调用上面的函数,判断了、循环了调用等! #函数里也可以调用函数例子:def func4(): #__name__ 这个是用来判断,如果你是把这个程序当模块导入的话它的__name__就等于这个程序的文件名,如果是手动执行这个脚本比如:python test.py 那么__name__就等于__main__ 所以,我们可以用他来做判断,如果你是手动执行我就调用函数执行if下面的语句,如果你是调用模块下面的if判断后面的语句就不执行!仅当模块使用! #如果函数当模块导入的时候,他导入的是函数的名称,内容没有被导入,当你去调用的时候他才会导入函数里的信息。
自定义函数
一、背景
在学习函数之前,一直遵循:面向过程编程,即:根据业务逻辑从上到下实现功能,其往往用一长段代码来实现指定功能,开发工程中比较常见的操作就是粘贴复制,也就是将之前实现的代码块复制到现需功能处,如下:
while True:
if cpu利用率 > 90 %:
# 发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接
if 硬盘使用空间 > 90%:
# 发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接
if 内存占用 >80%: # 发送邮件提醒 连接邮箱服务器 发送邮件 关闭连接
上面的代码就是面向过程的编程,但是如果报警多了的话成百的代码需要如何操作呢?复制粘贴就会显得自己low,该如何编写呢,请看下面的代码:
def 发送邮件(内容)
#发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接
while True:
if cpu利用率 > 90%:
发送邮件('CPU报警')
if 硬盘使用空间 > 90%: 发送邮件('硬盘报警') if 内存占用 > 80%: 发送邮件('内存报警')
第二个必然比第一个的重用性和可读性要好,其实就是函数式编程和面向过程编程的区别:
● 面向过程:更具需求一行一行垒加代码!逻辑乱、并切代码重复、不易修改重用性差!
● 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可
● 面向对象:对函数进行分类和封装,让开发"更快更好更强"
二、函数式编程
函数式编程最重要的是增强代码的重用性和可读性:
# 语法
def 函数(参数1,参数2,参数3,....):
' ' '注释' ' '
函数体
return 返回的值
#函数名的定义要能反映其意义
函数的定义主要有如下要点:
● def 表示函数的关键字
● 函数名:函数的名称,日后根据函数名调用函数
● 参数:为函数体提供数据
● 函数体:函数中进行一系列的逻辑计算,如,发送邮件、计算出[11,22,45,56,45,]中的最大数等....
● 返回值:当函数执行完毕后,可以给调用者返回数据。
函数使用的原则:先定义,后调用
函数即"变量","变量"必须先定义后引用,未定义而直接函数,就相当于在引用一个不存在的变量名 #测试一 def func(): print('from foo') bar() func() #报错 #测试二 def abc(): print('from abc') def func(): print('from func') abc() func() #正常 #测试三 def func(): print('from func') abc() def abc(): print('from abc') func() #不会报错 #结论:函数的使用,必须遵循原则:先定义,后调用 #我们在使用函数时,一定要明确的区分定义阶段和调用阶段 #定义阶段: def func(): print('from func') abc() def abc(): print('from abc') #调用阶段 func()
函数在定义阶段都干了哪些事?
#只检测语法,不执行代码 也就说,语法错误在函数定义阶段就会检测出来,而代码的逻辑错误只有在执行的时候才会知道
定义函数的三种形式
#1、无参:应用场景仅仅只是执行一些操作,比如与用户交互,打印 #2、有参:需要根据外部传进来的参数,才能执行相应的逻辑,比如统计长度,求最大值最小值 #3、空函数:设计代码结构
1、返回值
函数式一个功能块,该功能到底执行成功与否,需要通过返回值来告知调用者。
def test():
'''
2*x+1
:param x:整形数字
:return: 返回计算结果
'''
x=3
y=2*x+1
return y
a = test()
print(a)
def 发送短信():
发送短信的代码..:
if 发送成功:
return True
else:
return False
while True: # 每次执行发送短信函数,都会将返回值自动赋值给result # 之后,可以根据result来写日志,或重发等操作 result = 发送短信() if result == False: 记录日志,短信发送失败....
2、参数
1、形参与实参
#形参即变量名,实参即变量值,函数调用时,将值绑定到变量名上,函数调用结束,解除绑定
2、具体应用
#1、位置参数:按照从左到右的顺序定义的参数
位置形参:必选参数
位置实参:按照位置给形参传值
#2、关键字参数:安装key=value的形式定义的实参
无需按照位置为形象传值
注意的问题:
1、关键字实参必须在位置实参右面
2、对同一个形参不能重复传值
#3、默认参数:形参在定义时就已经为其赋值
可以传值也可以不传值,经常需要变得参数定义成位置形参,变成较小的参数定义成默认参数(形参)
注意的问题:
1、只在定义时赋值一次 2、默认参数的定义应该在位置形参右面 3、默认参数通常应该定义成不可变类型 #4、可变长参数: 可变长指的是实参值的个数不固定 而实参有按位置和按关键字两种形式定义,针对这两种形式的可变长,形参对应有两种解决方案来完整地存放它们,分别是*args,**kwargs # ########### *args #################### def foo(x,y,*args): print(x,y) print(args) foo(1,2,3,4,5) 输出结果: C:\Python35\python3.exe C:/Users/ZR/PycharmProjects/python全栈开发/day15/def函数.py 1 2 (3, 4, 5) def foo(x,y,*args): print(x,y) print(args) foo(1,2,*[3,4,5]) 输出结果: 1 2 (3, 4, 5) def foo(x,y,z): print(1,2,3) foo(*[1,2,3]) 输出结果: 1 2 3 # ############ **kwargs ################### def foo(x,y,**kwargs): print(x,y) print(kwargs) foo(1,y=2,a=1,b=2,c=3) 输出结果: 1 2 {'c': 3, 'a': 1, 'b': 2} def foo(x,y,**kwargs): print(x,y) print(kwargs) foo(1,y=2,**{'a':1,'b':2, 'c':3}) 输出结果: #更上面输出结果相同,只不过位置有所变化 1 2 {'a': 1, 'b': 2, 'c': 3} def foo(x,y,z): print(x, y, z) foo(**{'z':1,'x':2,'y':3}) 输出结果: 2 3 1 # ##### *args + **kwargs############ def foo(x,y): print(x,y) def wrapper(*args,**kwargs): print('==========>') foo(*args,**kwargs) #5、命名关键字参数:*后定义的参数,必须被传值(有默认值的除外),且必须按照关键字实参的形式传递 def foo(x,y,*args,a=1,b,**kwargs): print(x,y) print(args) print(a) print(b) print(kwargs) foo(1,2,3,4,5,b=3,c=4,d=5) 输出结果: 1 2 (3, 4, 5) 1 3 {'c': 4, 'd': 5}
为什么要用参数?举例说明
如果不定义参数,用函数的话:(每个有相同功能的都写个函数,说好的代码简化呢?)
def cpu报警邮件():
# 发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接
def 硬盘报警邮件():
# 发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接
def 内存报警邮件():
# 发送邮件提醒
连接邮箱服务器 发送邮件 关闭连接 while True: if CPU利用率 > 90%: cpu报警邮件() if 硬盘使用空间 > 90%: 硬盘报警邮件() if 内存占用 > 80%: 内存报警邮件()
使用函数:(代码明显少了很多,把重复内用改为参数调用!)
def 发送邮件(内容)
#发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接
while True:
if cpu利用率 > 90%:
发送邮件('CPU报警')
if 硬盘使用空间 > 90%: 发送邮件('硬盘报警') if 内存占用 > 80%: 发送邮件('内存报警')
函数的四种不同的参数:
1、普通参数
2、默认参数
3、动态参数
普通参数:
# #### 定义函数 ###############
# name 叫做函数func的形式参数,简称:形参
def func(name):
print(name)
# #### 执行函数 ###############
# 'zhurui' 叫做函数func的实际参数,简称:实参
func('zhurui')
但是普通参数有个问题!你在定义参数的时候定义了几个参数,你在调用的时候必须给他几个参数否则会报错!
def func(name,age):
print(name,age)
func('william')
报错提示:
TypeError: func() missing 1 required positional argument: 'age'
其正确的写法是:
def func(name,age):
print(name,age) func('william',24) 输出结果: william 24
默认参数:
在你没有给他指定参数的时候它就会使用默认参数!
def func(name, age = 24):
print('%s:%s' %(name,age))
# 指定参数:
func('william', 32)
输出结果:
william:24
# 使用默认参数
func('william')
输出结果:
william:27
三、局部变量与全局变量
在子程序中定义的变量成为局部变量,在程序的一开始定义的变量称为全局变量。
全局变量作用域是整个程序,局部变量作用域是定义该变量的子程序。
当全局变量与局部变量同名时:
在定义局部变量的子程序内,局部变量起作用;在其他地方全局变量起作用。
name='simon' #全局变量 def change_name(): name='牛逼的人物' #局部变量 print('change_name',name) change_name() print(name) 输出结果: C:\Python35\python3.exe G:/python_s3/day15/全局变量与局部变量.py change_name 牛逼的人物 simon #输出结果要想让全局变量改变成局部变量需要在作用域中加 global name,相当于指针跟引用 代码如下: name='simon' #全局变量 def change_name(): global name name='牛逼的人物' #局部变量 print('change_name',name) change_name() print(name) 输出结果: C:\Python35\python3.exe G:/python_s3/day15/全局变量与局部变量.py change_name 牛逼的人物 牛逼的人物
name = 'simon' def test1(): #name = '孙悟空' global name #将全局变量引用过来,已经声明,name就是全局的那个变量 print('我要搞', name) def test2(): name = '基' print('我要搞', name) #如果函数的内部无 global关键字,优先读取局部变量,能读取全局变量,无法对全局变量重新赋值 NAME='fff',但是对于可变类型,可以对内部元素进行操作 #如果函数中有global关键字,变量本质上就是全局的那个变量,可读取可赋值 test1() test2()
注意:
全局变量变量名大写
局部变量变量名小写
def huangwei(): name = '黄伟' print(name) def liuyang(): name = '刘洋' print(name) def nulige(): name = '沪指花' print(name) print(name) nulige() liuyang() print(name) huangwei()
def weihou(): name = "陈卓" def weiweihou(): global name name = "冷静" weiweihou() print(name) print(name) weihou() print(name) 输出结果: C:\Python35\python3.exe G:/python_s3/day15/全局变量与局部变量.py 刚娘 陈卓 冷静
代码运行示例图:
使用nonlocal 指定上一级变量
name = "刚娘" def weihou(): name = "陈卓" def weiweihou(): nonlocal name #nonlocal,指定上一级变量 name = "冷静" weiweihou() print(name) print(name) weihou() print(name) 运行结果: C:\Python35\python3.exe G:/python_s3/day15/全局变量与局部变量.py 刚娘 冷静 刚娘
四、递归
在函数内部,可以调用其他函数。如果一个函数在内部调用自身
def calc(n): print(n) if int(n/2) == 0: return n return calc(int(n/2)) calc(10) 输出结果: C:\Python35\python3.exe G:/python_s3/day15/全局变量与局部变量.py 10 5 2 1
__author__ = 'zhurui' import time person_list=['zhurui','caiyunjie','yuanhao','simon','william','zcz'] def ask_way(person_list): print('-'*60) if len(person_list) == 0: return '没人知道' person=person_list.pop(0) if person == 'simon': return '%s说:我知道,东方财富网就在东方财富大厦A座,下肇嘉浜路地铁站就是' %person print('hi 美男[%s],敢问路在何方' % person) print('%s回答道:我不知道,但你慧眼识珠,我去帮你问问%s...' % (person,person_list) ) time.sleep(3) res = ask_way(person_list) print('%s问的结果是: %res' %(person,res)) return res res = ask_way(person_list) print(res)
运行结果如下:
C:\Python35\python3.exe G:/python_s3/day15/全局变量与局部变量.py ------------------------------------------------------------ hi 美男[zhurui],敢问路在何方 zhurui回答道:我不知道,但你慧眼识珠,我去帮你问问['caiyunjie', 'yuanhao', 'simon', 'william', 'zcz']... ------------------------------------------------------------ hi 美男[caiyunjie],敢问路在何方 caiyunjie回答道:我不知道,但你慧眼识珠,我去帮你问问['yuanhao', 'simon', 'william', 'zcz']... ------------------------------------------------------------ hi 美男[yuanhao],敢问路在何方 yuanhao回答道:我不知道,但你慧眼识珠,我去帮你问问['simon', 'william', 'zcz']... ------------------------------------------------------------ yuanhao问的结果是: 'simon说:我知道,东方财富网就在东方财富大厦A座,下肇嘉浜路地铁站就是'es caiyunjie问的结果是: 'simon说:我知道,东方财富网就在东方财富大厦A座,下肇嘉浜路地铁站就是'es zhurui问的结果是: 'simon说:我知道,东方财富网就在东方财富大厦A座,下肇嘉浜路地铁站就是'es simon说:我知道,东方财富网就在东方财富大厦A座,下肇嘉浜路地铁站就是 Process finished with exit code 0
递归特性:
1.必须有一个明确的结束条件
2.每次进入更深一层递归时,问题规模相比上次递归都应有所减少
3.递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)
五、作用域
示例代码如下:
#1、作用域即范围
- 全局范围(内置名称空间与全局名称空间属于该范围):全局存活,全局有效
- 局部范围(局部名称空间属于该范围):临时存活,局部有效
#2、作用域关系是在函数定义阶段就已经固定的,与函数的调用位置无关,如下
x = 1
def f1():
def f2():
print(x)
return f2 x = 100 def f3(func): x=2 func() x = 10000 f3(f1()) 结果: C:\Python35\python3.exe G:/python_s3/day16/作用域.py 10000 #3、查看作用域:globals(),locals() LEGB 代表名字查找顺序: locals -> enclosing function -> globals -> __builtins__ locals 是函数内的名字空间,包括局部变量和形参 enclosing 外部嵌套函数的名字空间(闭包中常见) globals 全局变量,函数定义所在模块的名字空间 builtins 内置模块的名字空间
六、匿名函数
代码如下:
#1、 代码方式一
def calc(x):
return x+1
res = calc(10)
print(res)
输出结果为:
C:\Python35\python3.exe G:/python_s3/day16/匿名函数.py
11
#2、用lambda方式表达
print (lambda x:x+1) #代表单纯的输出内存地址
func=lambda x:x+1
print (func(10)) 输出结果为: at 0x00000000006EE0D0> 11
#表达方式1
name = 'simon'
def change_name(x):
return name+'_sb'
res = change_name(name)
print(res)
#lambda方式表达:
name='simon'
func = lambda x:x+'_sb'
print(func(name)) 输出结果: C:\Python35\python3.exe G:/python_s3/day16/匿名函数.py simon_sb simon_sb
匿名函数补充:
f = lambda x,y,z:(x+1,y+1,z+1)
print(f(1,2,3))
输出结果为:
C:\Python35\python3.exe G:/python_s3/day16/匿名函数.py
(2, 3, 4)
七、函数式编程
11 高阶函数
满足俩个特性任意一个即为高阶函数
1、函数的传入参数是一个函数名
2、函数的返回值是一个函数名
例一:不可变:不用变量保存状态,不修改变量
#非函数式 a = 1 def incr_test1(): global a a+=1 return a incr_test1() print(a) 输出结果: C:\Python35\python3.exe G:/python_s3/day16/匿名函数.py 2 #函数式 n=1 def incr_test2(n): return n+1 print(incr_test2(2)) print (n) 输出结果: C:\Python35\python3.exe G:/python_s3/day16/匿名函数.py 3 1
简单小结:
八、内置函数
#空,None,0的布尔值为False,其余都为True
print(bool(''))
print(bool(None))
print(bool(0))
C:\Python35\python3.exe G:/python_s3/day16/内置函数.py
False
False
False
#bytes()函数,转换成二进制
name='你好'
print(bytes(name,encoding='utf-8'))
print(bytes(name,encoding='utf-8').decode('utf-8')) #decode是将前面处理的编码再解码,还原成原来
print(bytes(name,encoding='gbk')) print(bytes(name,encoding='gbk').decode('gbk')) print(bytes(name,encoding='ascii')) #ascii不能编码中文 C:\Python35\python3.exe G:/python_s3/day16/内置函数.py b'\xe4\xbd\xa0\xe5\xa5\xbd' 你好 b'\xc4\xe3\xba\xc3' 你好
max函数小结:
1、max函数处理的是可迭代对象,相当于一个for循环取出每个元素进行比较,注意,不同类型之间不能进行比较
2、每个元素间进行比较,是从每个元素的第一个位置依次比较,如果这一个位置分出大小,后面的都不需要比较了,直接得出这俩元素的大小
#空,None,0的布尔值为False,其余都为True
# print(bool(''))
# print(bool(None))
# print(bool(0))
# #bytes()函数,转换成二进制
# name='你好'
# print(bytes(name,encoding='utf-8'))
# print(bytes(name,encoding='utf-8').decode('utf-8')) #decode是将前面处理的编码再解码,还原成原来
# print(bytes(name,encoding='gbk'))
# print(bytes(name,encoding='gbk').decode('gbk'))
#
# print(bytes(name,encoding='ascii')) #ascii不能编码中文
#chr()函数
# print(chr(97))
# print(dir(dict))
# print(divmod(10,36))
# dic ={'name':'alex'}
# print(dic)
# #可hash的数据类型即不可变类型,不可hash的类型即可变数据类型
# name='simon'
# print(hash(name))
# print(help(all))
#
# print(bin(10)) #10进制->2进制
# print(hex(12))
# print(oct(12)) #10进制转8进制
#
# print(isinstance(1,int))
# l=[1,3,100,-1,-2,4]
# print(max(l))
# print(min(l))
#zip()函数,相当于拉链的作用
# print(list(zip(('a','b','c'),(1,2,3))))
# print(list(zip(('a','b','c'),(1,2,3))))
# print(list(zip(('a','b','c','d'),(1,2,3))))
#
# p={'name':'alex','age':18,'gender':'none'}
# print(list(zip(p.keys(),p.values()))) #不加list,只会输出内存地址
# # print(list(p.keys()))
# # print(list(p.values()))
#
# print(list(zip('hello','12345'))) #zip方法里传两个参数,都是序列类型(列表,元祖,字符串)
# l=[1,3,100,-1,-2,4]
# print(max(l))
# print(min(l))
people=[
{'name':'alex','age':1000},
{'name':'wupeiqi','age':10000},
{'name':'yuanhao','age':9000},
{'name':'simon','age':18}, ] print('-------->',max(people,key=lambda dic:dic['age'])) # age_dic={'age1':18,'age4':20,'age3':100,'age2':30} # print(max(age_dic.values())) # print((max(age_dic.keys()),max(age_dic.values()))) age_dic={'alex_age':18,'wupeiqi_age':20,'zsc_age':100,'lhf_age':30} # print(max(age_dic.values())) #默认比较的是字典的key # print(max(age_dic)) # for item in zip(age_dic.values(),age_dic.keys()): #(18.'alex_age') (20,'wupeiqi_age') # print(item) # print(list(max(zip(age_dic.values(),age_dic.keys())))) # # l = [ # (5,'e'), # (1,'b'), # (3,'a'), # (4,'d'), # ] # print(list(max(l))) # # l1=['a10','b12','c10',100] #不同类型之间不能进行比较 # l1=['a10','b12','c10'] #不同类型之间不能进行比较 # print(list(max(l))) # print(max(l1)) #总结 #1、max的比较,传入的类型为可迭代类型 #2、max的比较,从第一个位置开始比较,如果已经比较出大小,不会再比较后面的位置,直接输出结果 # print(chr(97)) # print(ord('a')) #pow()函数: print(pow(2,3)) #2**3 print(pow(3,3,2)) #3**3/2 #reversed()函数,使结果反转 # l=[1,2,3,4] # print(list(reversed(l))) # # #round()函数:四舍不入函数 # print(round(3.5)) # # #set()函数: # print(set('hello')) #selict()函数:切片 # l='hello' # # print(l[3:5]) # s1=slice(3,5) # s2=slice(1,4,2) # print(l[s1]) # print(l[s2]) # print(s2.start) # print(s2.stop) # print(s2.step) #sorted()函数: # l=[3,2,1,5,7] # l1=[3,2,'a',1,5,7] # print(sorted(l)) # print(sorted(l1)) #程序本质就是在比较大小,不同类型之间不可以比较大小 people=[ {'name':'alex','age':1000}, {'name':'wupeiqi','age':10000}, {'name':'yuanhao','age':9000}, {'name':'simon','age':18}, ] print(sorted(people,key=lambda dic:dic['age'])) name_dic={ 'abyuanhao':900, 'alex':200, 'wupei':300, } print(sorted(name_dic)) print(sorted(name_dic,key=lambda key:name_dic[key])) print(sorted(zip(name_dic.values(),name_dic.keys()))) #str()函数 print(str('l')) print(str({'a':1})) #sum()函数 l=[1,2,3,4] print(sum(l)) print(sum(range(5))) p=range(10) print(sum(p)) #type()函数 l=[1,2,3,4] print('>>>>>>>',type(l)) msg='123' if type(msg) is str: msg=int(msg) msg+=1 print(msg) #var()函数 def test(): msg='人么容量为进入高温热将来惹我居然我给我' # print(locals()) print(vars()) test() #import ----->sys-------->__import__() #__import__()函数: #可以导入字符串 # import 'test' #不能导入字符串