之所以选择Sqoop1是因为Sqoop2目前问题太多。无法正常使用,综合比较后选择Sqoop1。
Sqoop1安装配置比较简单
一、安装部署
(1)、下载地址:http://archive.cloudera.com/cdh5/cdh/5/sqoop-1.4.6-cdh5.5.2.tar.gz
解压到/opt/cdh5/sqoop
(2)、拷贝mysql的jdbc驱动包mysql-connector-java-5.1.31-bin.jar到sqoop/lib目录下。
(3)、配置环境变量
#sqoop
export SQOOP_HOME=/opt/cdh5/sqoop
export PATH=$PATH:$SQOOP_HOME/bin
(4)、复制sqoop/conf/sqoop-env-template.sh为sqoop-env.sh
添加相关的配置
#Setpath to where bin/hadoop is available
exportHADOOP_COMMON_HOME=/opt/cdh5/hadoop
#Setpath to where hadoop-*-core.jar isavailable
exportHADOOP_MAPRED_HOME=/opt/cdh5/hadoop
#setthe path to where bin/hbase isavailable
exportHBASE_HOME=/opt/cdh5/hbase
#Setthe path to where bin/hive is available
exportHIVE_HOME= /opt/cdh5/hive
#Setthe path for where zookeper config diris
exportZOOCFGDIR= /opt/cdh5/zookeeper
(5)、测试Sqoop
发现有警告
修改$SQOOP_HOME/bin/configure-sqoop
注释掉HCatalog,Accumulo检查(除非你准备使用HCatalog,Accumulo等HADOOP上的组件)
## Moved to be a runtime check in sqoop.
#if [ ! -d "${HCAT_HOME}" ]; then
# echo "Warning: $HCAT_HOME does not exist! HCatalog jobs willfail."
# echo 'Please set $HCAT_HOME to the root of your HCatalog installation.'
#fi
#if [ ! -d "${ACCUMULO_HOME}" ];then
# echo "Warning: $ACCUMULO_HOME does not exist! Accumulo imports willfail."
# echo 'Please set $ACCUMULO_HOME to the root of your Accumuloinstallation.'
#fi
再次执行sqoop version
你也可以查看某一个命令的使用说明:
$ sqoopimport --help
$ sqoophelp import
sqoop import 的一个示例如下:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS
你还可以使用 --options-file 来传入一个文件,使用这种方式可以重用一些配置参数:
$ sqoop --options-file /users/homer/work/import.txt --table TEST
/users/homer/work/import.txt 文件内容如下:
import
--connect
jdbc:mysql://192.168.56.121:3306/metastore
--username
hiveuser
--password
redhat
二、Sqoop使用说明
1、测试连接:
(1)显示mysql数据库列表
sqoop list-databases –connect jdbc:mysql://hadoop003:3306/--username root –P
(2)显示数据库里所有表:
sqoop list-tables --connectjdbc:mysql://hadoop003:3306/EDW --username root -P
2、Mysql与HDFS互导
(1)mysql导入到hdfs
把mysql中表fin_cashier_order导入到hdfs,导入之前查询一下fin_cashier_order表中的数据
共:199条
sqoop import --connectjdbc:mysql://hadoop003:3306/ssa --username root --password ***** --table fin_cashier_order --target-dir/user/hadoop/databases/ssa/fin_cashier_order -m 4
-m 表示Map 并发数
若是不写--target-dir 则默认是hdfs上的user/username/tablename 路径
如果重复执行,会提示目录已经存在,可以手动删除
运行完mapreduce结束后去HDFS上检查
验证hdfs上导入的数据:
hadoop fs -ls /user/hadoop/databases/ssa/fin_cashier_order
hadoop fs -cat /user/hadoop/databases/ssa/fin_cashier_order/part-m-00000
(2)HDFS导入到mysql
把HDFS中数据导入到Mysql表中,mysql中需要预先建立空表fin_cashier_order2,此时该表为空
sqoop export --connectjdbc:mysql://hadoop003:3306/ssa --table fin_cashier_order2 --username root--password ****** --export-dirhdfs://jrtestcluster/user/hadoop/databases/ssa/fin_cashier_order/
运行完显示
16/02/25 16:23:39 INFOmapreduce.ExportJobBase: Transferred 70.4619 KB in 48.3235 seconds (1.4581KB/sec)
16/02/25 16:23:39 INFO mapreduce.ExportJobBase:Exported 199 records.
显示导出199条记录。
到表fin_cashier_order2查看
并且正好也是199条。
至此,用Sqoop将mysql与HDFS互导功都验证完毕
你还可以指定其他的参数:
参数
说明
--append
将数据追加到hdfs中已经存在的dataset中。使用该参数,sqoop将把数据先导入到一个临时目录中,然后重新给文件命名到一个正式的目录中,以避免和该目录中已存在的文件重名。
--as-avrodatafile
将数据导入到一个Avro数据文件中
--as-sequencefile
将数据导入到一个sequence文件中
--as-textfile
将数据导入到一个普通文本文件中,生成该文本文件后,可以在hive中通过sql语句查询出结果。
--boundary-query
边界查询,也就是在导入前先通过SQL查询得到一个结果集,然后导入的数据就是该结果集内的数据,格式如:--boundary-query 'select id,no from t where id = 3'
,表示导入的数据为id=3的记录,或者 select min(), max() from ,注意查询的字段中不能有数据类型为字符串的字段,否则会报错
--columns
指定要导入的字段值,格式如:--columns id,username
--direct
直接导入模式,使用的是关系数据库自带的导入导出工具。官网上是说这样导入会更快
--direct-split-size
在使用上面direct直接导入的基础上,对导入的流按字节数分块,特别是使用直连模式从PostgreSQL导入数据的时候,可以将一个到达设定大小的文件分为几个独立的文件。
--inline-lob-limit
设定大对象数据类型的最大值
-m,--num-mappers
启动N个map来并行导入数据,默认是4个,最好不要将数字设置为高于集群的节点数
--query,-e
从查询结果中导入数据,该参数使用时必须指定–target-dir
、–hive-table
,在查询语句中一定要有where条件且在where条件中需要包含 \$CONDITIONS
,示例:--query 'select * from t where \$CONDITIONS ' --target-dir /tmp/t –hive-table t
--split-by
表的列名,用来切分工作单元,一般后面跟主键ID
--table
关系数据库表名,数据从该表中获取
--delete-target-dir
删除目标目录
--target-dir
指定hdfs路径
--warehouse-dir
与 --target-dir
不能同时使用,指定数据导入的存放目录,适用于hdfs导入,不适合导入hive目录
--where
从关系数据库导入数据时的查询条件,示例:--where "id = 2"
-z,--compress
压缩参数,默认情况下数据是没被压缩的,通过该参数可以使用gzip压缩算法对数据进行压缩,适用于SequenceFile, text文本文件, 和Avro文件
--compression-codec
Hadoop压缩编码,默认是gzip
--null-string
可选参数,如果没有指定,则字符串null将被使用
--null-non-string
可选参数,如果没有指定,则字符串null将被使用
示例程序:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --columns "tbl_id,create_time" --where "tbl_id > 1" --target-dir /user/hive/result
使用 sql 语句
参照上表,使用 sql 语句查询时,需要指定 $CONDITIONS
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --query 'SELECT * from TBLS where \$CONDITIONS ' --split-by tbl_id -m 4 --target-dir /user/hive/result
上面命令通过 -m 1 控制并发的 map 数。
使用 direct 模式:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --delete-target-dir --direct --default-character-set UTF-8 --target-dir /user/hive/result
指定文件输出格式:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by"\t" --lines-terminated-by "\n" --delete-target-dir --target-dir /user/hive/result
这时候查看 hdfs 中数据(观察分隔符是否为制表符):
$ hadoop fs -ls result
Found 5 items
-rw-r--r-- 3 root hadoop 0 2014-08-04 16:07 result/_SUCCESS
-rw-r--r-- 3 root hadoop 69 2014-08-04 16:07 result/part-m-00000
-rw-r--r-- 3 root hadoop 0 2014-08-04 16:07 result/part-m-00001
-rw-r--r-- 3 root hadoop 142 2014-08-04 16:07 result/part-m-00002
-rw-r--r-- 3 root hadoop 62 2014-08-04 16:07 result/part-m-00003
$ hadoop fs -cat result/part-m-00000
34 1406784308 8 0 root 0 45 test1 EXTERNAL_TABLE null null null
$ hadoop fs -cat result/part-m-00002
40 1406797005 9 0 root 0 52 test2 EXTERNAL_TABLE null null null
42 1407122307 7 0 root 0 59 test3 EXTERNAL_TABLE null null null
指定空字符串:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --delete-target-dir --null-string '\\N' --null-non-string '\\N' --target-dir /user/hive/result
如果需要指定压缩:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --delete-target-dir --null-string '\\N' --null-non-string '\\N' --compression-codec "com.hadoop.compression.lzo.LzopCodec" --target-dir /user/hive/result
附:可选的文件参数如下表。
参数
说明
--enclosed-by
给字段值前后加上指定的字符,比如双引号,示例:--enclosed-by '\"'
,显示例子:"3","jimsss","[email protected] "
--escaped-by
给双引号作转义处理,如字段值为"测试",经过 --escaped-by "\\"
处理后,在hdfs中的显示值为:\"测试\"
,对单引号无效
--fields-terminated-by
设定每个字段是以什么符号作为结束的,默认是逗号,也可以改为其它符号,如句号.
,示例如:--fields-terminated-by
--lines-terminated-by
设定每条记录行之间的分隔符,默认是换行串,但也可以设定自己所需要的字符串,示例如:--lines-terminated-by "#"
以#号分隔
--mysql-delimiters
Mysql默认的分隔符设置,字段之间以,
隔开,行之间以换行\n
隔开,默认转义符号是\
,字段值以单引号'
包含起来。
--optionally-enclosed-by
enclosed-by是强制给每个字段值前后都加上指定的符号,而--optionally-enclosed-by
只是给带有双引号或单引号的字段值加上指定的符号,故叫可选的
3、Mysql与Hive互导
出现如下错误:
错误1:
ERROR tool.ImportTool: EncounteredIOException running import job: java.io.IOException: DataStreamer Exception:
atorg.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:796)
Caused by: java.lang.OutOfMemoryError:unable to create new native thread
at java.lang.Thread.start0(Native Method)
at java.lang.Thread.start(Thread.java:714)
atorg.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.initDataStreaming(DFSOutputStream.java:581)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:669)
解决方法:
net.ipv4.ip_local_port_range = 1024 65000
修改系统参数
echo "100000" > /proc/sys/kernel/threads-max
echo "100000" > /proc/sys/kernel/pid_max (默认32768 )
echo "200000" > /proc/sys/vm/max_map_count (默认65530 )
修改/etc/security/limits.conf
* - nproc 999999 * -nofile 999999 PS:nproc是修改系统的max user processes大小;nofile 是修改open files的大小,另外linux 2.6.25内核之前有个宏定义,定义了这个值的最大值,为1024*1024,正好是100万,而在2.6.25内核及其之后,这个值是可以通过/proc/sys/fs/nr_open来设置,不过,999999足够用了。很多人可能会遇到,只能启动32000 多个线程就不能再起更多的线程了,其实就是pid_max = 32768 给限制住了
增加map数量,通过sqoop -m 选项指定更多的map。通过更多的map,降少每个子进程占用的heap space,避免超出hadoop设置的java heap space 大小 sqoop ... -m
错误2:
Caused by: java.lang.RuntimeException:java.sql.SQLException: Access denied for user 'root'@'hadoop003' (usingpassword: YES)
atorg.apache.sqoop.mapreduce.db.DBInputFormat.getConnection(DBInputFormat.java:220)
atorg.apache.sqoop.mapreduce.db.DBInputFormat.setConf(DBInputFormat.java:165)
... 9 more
程序正常运行,结果也正确。说明数据库连接是正确的,而且单独用mysql连接也是可以的。就是报这个异常错误。
查询数据库里用户信息
JDBC连接的机器名是hadoop003,虽然已经赋予root所有机器的远程访问权限(“%”),但是hadoop003这个账户可能没有开通机器的远程权限。于是给hadoop003这个机器开通远程权限。
GRANT ALL PRIVILEGES ON *.* TO'root'@'hadoop003' IDENTIFIED BY '********' WITH GRANT OPTION;
再次执行导入命令。成功。不再出现上面错误。
错误3:
从mysql导入到Hive里报如下错误:
ERROR hive.HiveConfig: Could not loadorg.apache.hadoop.hive.conf.HiveConf. Make sure HIVE_CONF_DIR is set correctly.
16/02/26 14:43:47 ERROR tool.ImportTool:Encountered IOException running import job: java.io.IOException:java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf
数据已经导入到HDFS。从HDFS移动到Hive里时出错。提示HIVE_CONF_DIR配置不对。
但是将HIVE_CONF_DIR添加到sqoop-env.sh、hadoop-env.sh、hive-env.sh都不起作用。
最终正确的解决方法:
在/etc/profile 里添加下面一句话
exportHADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/lib/*
Sqoop-1.4.7版本好像解决了这个问题。期待这个版本
你可能感兴趣的:(hadoop)
浅谈MapReduce
Android路上的人
Hadoop 分布式计算 mapreduce 分布式 框架 hadoop
从今天开始,本人将会开始对另一项技术的学习,就是当下炙手可热的Hadoop分布式就算技术。目前国内外的诸多公司因为业务发展的需要,都纷纷用了此平台。国内的比如BAT啦,国外的在这方面走的更加的前面,就不一一列举了。但是Hadoop作为Apache的一个开源项目,在下面有非常多的子项目,比如HDFS,HBase,Hive,Pig,等等,要先彻底学习整个Hadoop,仅仅凭借一个的力量,是远远不够的。
Hadoop
傲雪凌霜,松柏长青
后端 大数据 hadoop 大数据 分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
Hadoop架构
henan程序媛
hadoop 大数据 分布式
一、案列分析1.1案例概述现在已经进入了大数据(BigData)时代,数以万计用户的互联网服务时时刻刻都在产生大量的交互,要处理的数据量实在是太大了,以传统的数据库技术等其他手段根本无法应对数据处理的实时性、有效性的需求。HDFS顺应时代出现,在解决大数据存储和计算方面有很多的优势。1.2案列前置知识点1.什么是大数据大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的大量数据集合,
分享一个基于python的电子书数据采集与可视化分析 hadoop电子书数据分析与推荐系统 spark大数据毕设项目(源码、调试、LW、开题、PPT)
计算机源码社
Python项目 大数据 大数据 python hadoop 计算机毕业设计选题 计算机毕业设计源码 数据分析 spark毕设
作者:计算机源码社个人简介:本人八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!学习资料、程序开发、技术解答、文档报告如需要源码,可以扫取文章下方二维码联系咨询Java项目微信小程序项目Android项目Python项目PHP项目ASP.NET项目Node.js项目选题推荐项目实战|p
hbase介绍
CrazyL-
云计算+大数据 hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员 大数据 hadoop 人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
Spark集群的三种模式
MelodyYN
# Spark spark hadoop big data
文章目录1、Spark的由来1.1Hadoop的发展1.2MapReduce与Spark对比2、Spark内置模块3、Spark运行模式3.1Standalone模式部署配置历史服务器配置高可用运行模式3.2Yarn模式安装部署配置历史服务器运行模式4、WordCount案例1、Spark的由来定义:Hadoop主要解决,海量数据的存储和海量数据的分析计算。Spark是一种基于内存的快速、通用、可
月度总结 | 2022年03月 | 考研与就业的抉择 | 确定未来走大数据开发路线
「已注销」
个人总结 hadoop
一、时间线梳理3月3日,寻找到同专业的就业伙伴3月5日,着手准备Java八股文,决定先走Java后端路线3月8月,申请到了校图书馆的考研专座,决定暂时放弃就业,先准备考研,买了数学和408的资料书3月9日-3月13日,因疫情原因,宿舍区暂封,这段时间在准备考研,发现内容特别多3月13日-3月19日,大部分时间在刷Hadoop、Zookeeper、Kafka的视频,同时在准备实习的项目3月20日,退
HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
Java中的大数据处理框架对比分析
省赚客app开发者
java 开发语言
Java中的大数据处理框架对比分析大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入探讨Java中常用的大数据处理框架,并对它们进行对比分析。大数据处理框架是现代数据驱动应用的核心,它们帮助企业处理和分析海量数据,以提取有价值的信息。本文将重点介绍ApacheHadoop、ApacheSpark、ApacheFlink和ApacheStorm这四种流行的
Hadoop windows intelij 跑 MR WordCount
piziyang12138
一、软件环境我使用的软件版本如下:IntellijIdea2017.1Maven3.3.9Hadoop分布式环境二、创建maven工程打开Idea,file->new->Project,左侧面板选择maven工程。(如果只跑MapReduce创建java工程即可,不用勾选Creatfromarchetype,如果想创建web工程或者使用骨架可以勾选)image.png设置GroupId和Artif
Hadoop学习第三课(HDFS架构--读、写流程)
小小程序员呀~
数据库 hadoop 架构 big data
1.块概念举例1:一桶水1000ml,瓶子的规格100ml=>需要10个瓶子装完一桶水1010ml,瓶子的规格100ml=>需要11个瓶子装完一桶水1010ml,瓶子的规格200ml=>需要6个瓶子装完块的大小规格,只要是需要存储,哪怕一点点,也是要占用一个块的块大小的参数:dfs.blocksize官方默认的大小为128M官网:https://hadoop.apache.org/docs/r3.
hadoop启动HDFS命令
m0_67401228
java 搜索引擎 linux 后端
启动命令:/hadoop/sbin/start-dfs.sh停止命令:/hadoop/sbin/stop-dfs.sh
【计算机毕设-大数据方向】基于Hadoop的电商交易数据分析可视化系统的设计与实现
程序员-石头山
大数据实战案例 大数据 hadoop 毕业设计 毕设
博主介绍:✌全平台粉丝5W+,高级大厂开发程序员,博客之星、掘金/知乎/华为云/阿里云等平台优质作者。【源码获取】关注并且私信我【联系方式】最下边感兴趣的可以先收藏起来,同学门有不懂的毕设选题,项目以及论文编写等相关问题都可以和学长沟通,希望帮助更多同学解决问题前言随着电子商务行业的迅猛发展,电商平台积累了海量的数据资源,这些数据不仅包括用户的基本信息、购物记录,还包括用户的浏览行为、评价反馈等多
分布式离线计算—Spark—基础介绍
测试开发abbey
人工智能—大数据
原文作者:饥渴的小苹果原文地址:【Spark】Spark基础教程目录Spark特点Spark相对于Hadoop的优势Spark生态系统Spark基本概念Spark结构设计Spark各种概念之间的关系Executor的优点Spark运行基本流程Spark运行架构的特点Spark的部署模式Spark三种部署方式Hadoop和Spark的统一部署摘要:Spark是基于内存计算的大数据并行计算框架Spar
spark常用命令
我是浣熊的微笑
spark
查看报错日志:yarnlogsapplicationIDspark2-submit--masteryarn--classcom.hik.ReadHdfstest-1.0-SNAPSHOT.jar进入$SPARK_HOME目录,输入bin/spark-submit--help可以得到该命令的使用帮助。hadoop@wyy:/app/hadoop/spark100$bin/spark-submit--
spark启动命令
学不会又听不懂
spark 大数据 分布式
hadoop启动:cd/root/toolssstart-dfs.sh,只需在hadoop01上启动stop-dfs.sh日志查看:cat/root/toolss/hadoop/logs/hadoop-root-datanode-hadoop03.outzookeeper启动:cd/root/toolss/zookeeperbin/zkServer.shstart,三台都要启动bin/zkServ
编程常用命令总结
Yellow0523
Linux BigData 大数据
编程命令大全1.软件环境变量的配置JavaScalaSparkHadoopHive2.大数据软件常用命令Spark基本命令Spark-SQL命令Hive命令HDFS命令YARN命令Zookeeper命令kafka命令Hibench命令MySQL命令3.Linux常用命令Git命令conda命令pip命令查看Linux系统的详细信息查看Linux系统架构(X86还是ARM,两种方法都可)端口号命令L
Hadoop常见面试题整理及解答
叶青舟
Linux hdfs 大数据 hadoop linux
Hadoop常见面试题整理及解答一、基础知识篇:1.把数据仓库从传统关系型数据库转到hadoop有什么优势?答:(1)关系型数据库成本高,且存储空间有限。而Hadoop使用较为廉价的机器存储数据,且Hadoop可以将大量机器构建成一个集群,并在集群中使用HDFS文件系统统一管理数据,极大的提高了数据的存储及处理能力。(2)关系型数据库仅支持标准结构化数据格式,Hadoop不仅支持标准结构化数据格式
2025毕业设计指南:如何用Hadoop构建超市进货推荐系统?大数据分析助力精准采购
计算机编程指导师
Java实战集 Python实战集 大数据实战集 课程设计 hadoop 数据分析 spring boot java 进货 python
✍✍计算机编程指导师⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!⚡⚡Java实战|SpringBoot/SSMPython实战项目|Django微信小程序/安卓实战项目大数据实战项目⚡⚡文末获取源码文章目录⚡⚡文末获取源码基于hadoop的超市进货推荐系
Hadoop Common 之序列化机制小解
猫君之上
# Apache Hadoop
1.JavaSerializable序列化该序列化通过ObjectInputStream的readObject实现序列化,ObjectOutputStream的writeObject实现反序列化。这不过此种序列化虽然跨病态兼容性强,但是因为存储过多的信息,但是传输效率比较低,所以hadoop弃用它。(序列化信息包括这个对象的类,类签名,类的所有静态,费静态成员的值,以及他们父类都要被写入)publ
深入理解hadoop(一)----Common的实现----Configuration
maoxiao_jsd
深入理解----hadoop
属本人个人原创,转载请注明,希望对大家有帮助!!一,hadoop的配置管理a,hadoop通过独有的Configuration处理配置信息Configurationconf=newConfiguration();conf.addResource("core-default.xml");conf.addResource("core-site.xml");后者会覆盖前者中未final标记的相同配置项b
hadoop 0.22.0 部署笔记
weixin_33701564
大数据 java 运维
为什么80%的码农都做不了架构师?>>>因为需要使用hbase,所以开始对hbase进行学习。hbase是部署在hadoop平台上的NOSql数据库,因此在部署hbase之前需要先部署hadoop。环境:redhat5、hadoop-0.22.0.tar.gz、jdk-6u13-linux-i586.zipip192.168.1.128hostname:localhost.localdomain(
解决Windows环境下hadoop集群的运行_window运行hadoop,unknown hadoop01(4)
2401_84160087
大数据 面试 学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。需要这份系统化资料的朋友,可以戳这里获取一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!org.apache.hadoophadoop-com
解决Windows环境下hadoop集群的运行_window运行hadoop,unknown hadoop01(3)
2401_84160087
大数据 面试 学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。需要这份系统化资料的朋友,可以戳这里获取一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!xmlns:xsi="http://www.w3.or
深入解析HDFS:定义、架构、原理、应用场景及常用命令
CloudJourney
hdfs 架构 hadoop
引言Hadoop分布式文件系统(HDFS,HadoopDistributedFileSystem)是Hadoop框架的核心组件之一,它提供了高可靠性、高可用性和高吞吐量的大规模数据存储和管理能力。本文将从HDFS的定义、架构、工作原理、应用场景以及常用命令等多个方面进行详细探讨,帮助读者全面深入地了解HDFS。1.HDFS的定义1.1什么是HDFSHDFS是Hadoop生态系统中的一个分布式文件系
Hadoop的搭建流程
lzhlizihang
hadoop 大数据 分布式
文章目录一、配置IP二、配置主机名三、配置主机映射四、关闭防火墙五、配置免密六、安装jdk1、第一步:2、第二步:3、第三步:4、第四步:5、第五步:七、安装hadoop1、上传2、解压3、重命名4、开始配置环境变量5、刷新配置文件6、验证hadoop命令是否可以识别八、全分布搭建7、修改配置文件core-site.xml8、修改配置文件hdfs-site.xml9、修改配置文件hadoop-en
hive搭建 -----内嵌模式和本地模式
lzhlizihang
hive hadoop
文章目录一、内嵌模式(使用较少)1、上传、解压、重命名2、配置环境变量3、配置conf下的hive-env.sh4、修改conf下的hive-site.xml5、启动hadoop集群6、给hdfs创建文件夹7、修改hive-site.xml中的非法字符8、初始化元数据9、测试是否成功10、内嵌模式的缺点二、本地模式(最常用)1、检查mysql是否正常2、上传、解压、重命名3、配置环境变量4、修改c
Hadoop之mapreduce -- WrodCount案例以及各种概念
lzhlizihang
hadoop mapreduce 大数据
文章目录一、MapReduce的优缺点二、MapReduce案例--WordCount1、导包2、Mapper方法3、Partitioner方法(自定义分区器)4、reducer方法5、driver(main方法)6、Writable(手机流量统计案例的实体类)三、关于片和块1、什么是片,什么是块?2、mapreduce启动多少个MapTask任务?四、MapReduce的原理五、Shuffle过
IAAS: IT公司去IOE-Alibaba系统构架解读
wishchin
心理学/职业 BigDataMini Spark PaaS
从Hadoop到自主研发,技术解读阿里去IOE后的系统架构原地址:......................云计算阿里飞天摘要:从IOE时代,到Hadoop与飞天并行,再到飞天单集群5000节点的实现,阿里一直摸索在技术衍变的前沿。这里,我们将从架构、性能、运维等多个方面深入了解阿里基础设施。【导读】互联网的普及,智能终端的增加,大数据时代悄然而至。在这个数据为王的时代,数十倍、数百倍的数据给各
apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
优化MySQL数据库性能的八种方法
AILIKES
sql mysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
通过Spring Mail Api发送邮件
120153216
邮件 main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
Intent 常用的用法备忘
7454103
.net android Google Blog F#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
Spring定时器时间配置
adminjun
spring 时间配置 定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
重构笔记——提取方法(Extract Method)
ayaoxinchao
java 重构 提炼函数 局部变量 提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis 数据库 NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
SecureCRT使用备注
bingyingao
secureCRT 每页 行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
素数与音乐
bookjovi
素数 数学 haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java 设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
hive实例讲解实现in和not in子句
daizj
hive not in in
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yii framework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
学习编程那点事
gcq511120594
编程 互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
一个备份MySQL数据库的简单Shell脚本
pda158
mysql 脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源 图标库 图片库 色彩板 字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>