Handler的工作原理

概述

Handler机制主要由Handler、MessageQueue、Looper三个类实现。Handler把Message放进MessageQueue里,Looper循环读取MessageQueue中的消息,然后交由消息的target处理,也就是交由Handler处理。由于在Thread A中调用sendMessage()方法,Looper在Thread B中运行处理消息,因此能实现线程的切换。

MessageQueue

MessageQueue的作用是存储消息,虽然名称带有Queue,但实际数据结构是一个单链表,这是由于MessageQueue并不完全是先进先出的原则,需要插入和删除操作,因此适用单链表结构。

MessageQueue主要有插入和读取并删除两个操作。插入数据对应的方法是enqueueMessage(),读取对应的方法是next()。

enqueueMessage方法源码如下:

boolean enqueueMessage(Message msg, long when) {
        ...
        synchronized (this) {
            ...

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

根据源码可以发现,enqueueMessage基本上是根据when属性做链表的插入操作。

next方法源码:

    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

next方法中读取消息大概逻辑为,如果有Message,并且已经到了Message的设定的处理时间,则返回该Message。否则更新nextPollTimeoutMillis变量记录等待时间,并判断是否有空闲消息,如果有空闲消息则进行处理,然后重新读取消息。如果没有空闲消息,就在nativePollOnce(ptr, nextPollTimeoutMillis)阻塞住,等待下一个消息。

Looper

Looper主要职责是不停的循环读取MessageQueue中的消息,然后交由Handler进行处理。对应的方法是loop()。

loop()源码如下:

    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        ...

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            ...
                msg.target.dispatchMessage(msg);
            ...

            msg.recycleUnchecked();
        }
    }

Looper无限循环读取消息,即使不再使用,也会阻塞着等待新消息,当前线程就无法结束,因此需要退出Looper的循环。

根据源码可以看到MessageQueue的next()方法返回null的时候会return。而在MessageQueue中的next()方法中可以看到mQuitting为true的时候返回null。搜索MessageQueue的源码发现通过quit(boolean safe)方法退出。

if (mQuitting) {
    dispose();
    return null;
}

Handler

Handler主要职责是发送消息和处理消息。

发送消息:

    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }

    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

Handler类发送消息的方法有很多,都是调用sendMessageDelayed()方法,最后调用enqueueMessage(),可以发现发送消息其实只是把消息放进MessageQueue。

这里设置了msg.target = this,在Looper取出消息的时候,就是交由target处理。以此来保证发出的消息由同一个Handler进行处理。

处理消息:

    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

消息处理逻辑如下:

  1. 如果msg的callback不为null,则调用msg.callback.run()。这主要处理Handler的post(Runnable r)方法发送过来的Runnable。处理方法如下:

       private static void handleCallback(Message message) {
           message.callback.run();
       }
  2. 如果mCallback不为null,就交给mCallback的handleCallback方法进行处理。

  3. 如果mCallback为null或者mCallback的handleCallback方法返回false,则直接交给Handler的handleMessage()方法处理。

相关问题

  • 在子线程new Handler的时候会出现bug如下:

    java.lang.RuntimeException: Can't create handler inside thread that has not called Looper.prepare()
    at android.os.Handler.(Handler.java:203)

    从源码中找问题,Handler最终构造方法如下:

      public Handler(Callback callback, boolean async) {
        ...
          mLooper = Looper.myLooper();
          if (mLooper == null) {
              throw new RuntimeException(
                  "Can't create handler inside thread that has not called Looper.prepare()");
          }
          mQueue = mLooper.mQueue;
          mCallback = callback;
          mAsynchronous = async;
      }

    当该线程不存在Looper对象时,会抛出这个异常。因此在初始化Handler之前,需要通过Looper.prepare()初始化Looper对象。并调用loop()方法开始循环读取Message。如下:

        Looper.prepare();
          Handler handler = new Handler();
          Looper.loop();  

    但是在主线程并不需要这么麻烦,是因为在主线程的main方法中,已经初始化了Looper对象。

    public static void main(String[] args) {
        ...
    
          Looper.prepareMainLooper();
    
          ActivityThread thread = new ActivityThread();
          thread.attach(false);
    
          if (sMainThreadHandler == null) {
              sMainThreadHandler = thread.getHandler();
          }
        ...
          Looper.loop();
    
          throw new RuntimeException("Main thread loop unexpectedly exited");
      }

    难道子线程使用Handler就活该这么麻烦吗?也不是,Android提供了HandlerThread类,封装了Looper相关操作,十分方便。

  • 在解决上个问题的时候,我们知道在主线程的main方法中调用了Looper.loop(),而loop()是无限循环的,那不是阻塞主线程了吗?

    这里确实阻塞住了,可以看到如果loop()方法执行完,就会抛出运行时异常,然后程序就运行完了。

    通过getHandler()方法找到对应的Handler,即H。

         public void handleMessage(Message msg) {
              if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what));
              switch (msg.what) {
                  case LAUNCH_ACTIVITY: {
                      Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart");
                      final ActivityClientRecord r = (ActivityClientRecord) msg.obj;
    
                      r.packageInfo = getPackageInfoNoCheck(
                              r.activityInfo.applicationInfo, r.compatInfo);
                      handleLaunchActivity(r, null, "LAUNCH_ACTIVITY");
                      Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                  } break;
                  case RELAUNCH_ACTIVITY: {
                      Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityRestart");
                      ActivityClientRecord r = (ActivityClientRecord)msg.obj;
                      handleRelaunchActivity(r);
                      Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                  } break;
                  case PAUSE_ACTIVITY: {
                      Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                      SomeArgs args = (SomeArgs) msg.obj;
                      handlePauseActivity((IBinder) args.arg1, false,
                              (args.argi1 & USER_LEAVING) != 0, args.argi2,
                              (args.argi1 & DONT_REPORT) != 0, args.argi3);
                      maybeSnapshot();
                      Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                  } break;
            ...

    通过H的case可以发现,Android的事件比如Activity的生命周期、广播、内存低等各个事件都在。主线程的运行就是处理各个消息,没有消息的时候会阻塞,但是不会ANR。造成ANR的原因一般当前事件没有及时得到处理。而阻塞状态下,新消息到达,就会唤醒主线程进行处理。

    同时,由于主线程阻塞,会释放CPU资源进入休眠状态,并不会消耗大量CPU资源。

你可能感兴趣的:(Android)