莫比乌斯反演题目总结

之前的小结:https://blog.csdn.net/fufck/article/details/78844309

1.bzoj2301 

题意:满足 a ≤ x ≤ b , c ≤ y ≤ d ,且gcd(x,y) = k 的个数(1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000)

思路:f(n)表示gcd恰好为n的个数,F(n)表示n|gcd的个数。

           f(k)=\sum_{k|d}^{}{}{\mu(\tfrac{d}{k})*F(d) }

          f(k)=\sum_{k|d}{}{}{\mu(\tfrac{d}{k})*\left \lfloor \tfrac{n}{d} \right \rfloor*\left \lfloor \tfrac{m}{d} \right \rfloor }

         后面那个只有2根号n个取值

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
#define maxn 401000
const int P=1e9+7;
using namespace std;
inline int rd()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
int tot;
int a,b,c,d,k;
int sum[50005],mu[50005],pri[50005];
bool mark[50005];
void getmu()
{
    mu[1]=1;
	for(int i=2;i<=50000;i++)
	{
		if(!mark[i]){mu[i]=-1;pri[++tot]=i;}
		for(int j=1;j<=tot&&i*pri[j]<=50000;j++)
		{
			mark[i*pri[j]]=1;
			if(i%pri[j]==0){mu[i*pri[j]]=0;break;}
			else mu[i*pri[j]]=-mu[i];
		}
	}
	for(int i=1;i<=50000;i++) sum[i]=sum[i-1]+mu[i];	
}
int cal(int n,int m)
{
	if(n>m) swap(n,m);
	int ans=0,pos;
	for(int i=1;i<=n;i=pos+1)
	{
		pos=min(n/(n/i),m/(m/i));
		ans+=(sum[pos]-sum[i-1])*(n/i)*(m/i);
	}
	return ans;
}
int main()
{
	getmu();
	int T=rd();
	while(T--)
	{
		a=rd();b=rd();c=rd();d=rd();k=rd();
		a--;c--;
		a/=k;b/=k;c/=k;d/=k;
		int ans=cal(a,c)+cal(b,d)-cal(a,d)-cal(b,c);
		printf("%d\n",ans);
	}
}

2.hdu5663

题意:求∑f(i,j)的值,当gcd(i,j)为完全平方数   f(i,j)=0;否则为1(1≤n,m≤10,000,000)

思路:f(n)表示gcd恰好为n*n的个数,F(n)表示n*n|gcd的个数。

           f(k)=\sum_{k*k|d}^{}{}{\mu(\tfrac{d}{k*k})*F(d) }

         f(k)=\sum_{k*k|d}{}{}{\mu(\tfrac{d}{k*k})*\left \lfloor \tfrac{n}{d} \right \rfloor*\left \lfloor \tfrac{m}{d} \right \rfloor }

         莫比乌斯反演题目总结_第1张图片

 

        这样会超时,但是我们观察第二个式子,我们可以枚举d,前缀sum重新定义为∑u[k*k|d]     

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
#define maxn 1e7
const int P=1e9+7;
using namespace std;
inline int rd()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
int tot;
int a,b,c,d,k,n,m;
int sum[10000005],mu[10000005],pri[10000005];
bool mark[10000005];
ll ans;
void getmu()
{
    mu[1]=1;
	for(int i=2;i<=maxn;i++)
	{
		if(!mark[i]){mu[i]=-1;pri[++tot]=i;}
		for(int j=1;j<=tot&&i*pri[j]<=maxn;j++)
		{
			mark[i*pri[j]]=1;
			if(i%pri[j]==0){mu[i*pri[j]]=0;break;}
			else mu[i*pri[j]]=-mu[i];
		}
	}
	for(int i=1;i*i<=maxn;i++) 
	   for(int j=i*i,k=1;j<=maxn;k++,j+=i*i)
	       sum[j]+=mu[k];
	for(int i=1;i<=maxn;i++) sum[i]+=sum[i-1];	
}
ll cal(int n,int m)
{
	if(n>m) swap(n,m);
	int pos;ll ans=0;
	for(int i=1;i<=n;i=pos+1)
	{
		pos=min(n/(n/i),m/(m/i));
		ans+=1ll*(sum[pos]-sum[i-1])*(n/i)*(m/i);
	}
	return ans;
}
int main()
{
	getmu();
	int T=rd();
	while(T--)
	{
		n=rd();m=rd();
		printf("%lld\n",1ll*n*m-cal(n,m));
	}
}

3.hdu6053

题意:两个序列,A,B,A序列给出,Bi<=Ai,问满足所有区间 gcd(bl,bl+1...br)≥2   B序列的方案数

思路:设G(i)表示i|gcd的个数

          G(d)=\prod_{i=1}^{n}\left \lfloor \frac{a[i]}{d} \right \rfloor

         ANS=\sum_{d=2}{}{-\mu(d)*\prod_{i=1}^{n}\left \lfloor \frac{a[i]}{d} \right \rfloor}

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
#define maxn 1e5
const int P=1e9+7;
using namespace std;
inline int rd()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
int tot;
int n,m,cas=0,ed,mi,x;
int sum[100005],mu[100005],pri[100005],a[100005];
bool mark[100005];
ll ans;
void getmu()
{
    mu[1]=1;
	for(int i=2;i<=maxn;i++)
	{
		if(!mark[i]){mu[i]=-1;pri[++tot]=i;}
		for(int j=1;j<=tot&&i*pri[j]<=maxn;j++)
		{
			mark[i*pri[j]]=1;
			if(i%pri[j]==0){mu[i*pri[j]]=0;break;}
			else mu[i*pri[j]]=-mu[i];
		}
	}
}
int qpow(ll x,ll n)
{
	ll res=1;
	while(n)
	  {
	  	if(n&1) res=(res*x)%P;
	  	n>>=1;x=(x*x)%P;
	  }
	return res;
}
ll cal()
{
	ll ans=0;
	for(int i=2;i<=mi;i++)
	  if(mu[i])
	  {
	  	ll cnt=-mu[i];
	  	for(int j=2;j<=ed/i;j++)
	  	{
	  		int l=i*j,r=min(ed,i*(j+1)-1) ;
	  	    cnt=(cnt*qpow(j,a[r]-a[l-1]))%P;
	    }
	    ans=(ans+cnt)%P;
	  } 
	return (ans+P)%P;
}
void init()
{
	memset(a,0,sizeof(a));
	ed=0;mi=1e5;
	n=rd();
	for(int i=1;i<=n;i++)
	   {
	   	x=rd();ed=max(ed,x);mi=min(mi,x);
	   	a[x]++;
	   }
	for(int i=2;i<=ed;i++) a[i]+=a[i-1];
}
int main()
{
	getmu();
	int T=rd();
	while(T--)
	{
		init();
		printf("Case #%d: %lld\n",++cas,cal());
	}
}

4.hdu1695

题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d)。(x,y) (y,x)是同一对

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
#define maxn 401000
const int P=1e9+7;
using namespace std;
inline int rd()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
int tot;
int a,b,c,d,k,cas=0;
int sum[150005],mu[150005],pri[150005];
bool mark[150005];
void getmu()
{
    mu[1]=1;
	for(int i=2;i<=100000;i++)
	{
		if(!mark[i]){mu[i]=-1;pri[++tot]=i;}
		for(int j=1;j<=tot&&i*pri[j]<=100000;j++)
		{
			mark[i*pri[j]]=1;
			if(i%pri[j]==0){mu[i*pri[j]]=0;break;}
			else mu[i*pri[j]]=-mu[i];
		}
	}
	for(int i=1;i<=100000;i++) sum[i]=sum[i-1]+mu[i];	
}
ll cal(int n,int m)
{
	if(n>m) swap(n,m);
	ll ans=0;
	int pos;
	for(int i=1;i<=n;i=pos+1)
	{
		pos=min(n/(n/i),m/(m/i));
		ans+=1ll*(sum[pos]-sum[i-1])*(n/i)*(m/i);
	}
	return ans;
}
int main()
{
	getmu();
	int T=rd();
	while(T--)
	{
		a=rd();b=rd();c=rd();d=rd();k=rd();
		if(k==0){printf("Case %d: 0\n",++cas);continue;}
		a--;c--;
		a/=k;b/=k;c/=k;d/=k;
		if(b>d) swap(b,d);
		ll ans=cal(b,d)-cal(b,b)/2;
		printf("Case %d: %lld\n",++cas,ans);
	}
}

5.hdu5656

题意:给你一个集合,求所有子集的gcd之和

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
#define maxn 401000
const int P=1e8+7;
using namespace std;
ll ans;
int a[1010],f[1010],p[1010],t,x,n;
void init()
{
memset(a,0,sizeof(a));
memset(f,0,sizeof(f));
ans=0;
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&x),a[x]++;
for(int i=1;i<=1000;i++)
   {
   	 int w=0;
   	 for(int j=i;j<=1000;j+=i) w+=a[j];
   	 f[i]=p[w]-1;
   }
} 
void work()
{
	for(int i=1000;i>=1;i--)
	  {
	  	for(int j=i+i;j<=1000;j+=i) f[i]=(f[i]-f[j]+P)%P;
	  	ans=(ans+1ll*f[i]*i)%P;
	  }
}
int main()
{
	p[0]=1;
	for(int i=1;i<=1000;i++) p[i]=(p[i-1]*2)%P;
 	scanf("%d",&t);
	while(t--) 
	{
		init();
		work();
		printf("%lld\n",ans);
	}
}

 

你可能感兴趣的:(hdu,莫比乌斯反演)