http://blog.csdn.net/yanming901012/article/details/8606183
本程序首先利用从摄像头检测到的人脸图片,先进行直方图均衡化
并缩放到92*112的图片大小,然后根据train.txt的采集到的人脸模版
进行匹配识别(最好是在统一光照下,采集不同角度的人脸图片各一张)
注意:影响的极大因素在于光照,模版若与采集的图像光照不一样,识别率很低。
经测试,模板若与检测的图像在同一光照下的话,侧脸,仰脸,正脸均可识别,且识别率较高
//
#include
#include
#include "cv.h"
#include "cvaux.h"
#include "highgui.h"
#include
#include
#include
#include
#include
#include
#include
////定义几个重要的全局变量
IplImage ** faceImgArr = 0; // 指向训练人脸和测试人脸的指针(在学习和识别阶段指向不同)
CvMat * personNumTruthMat = 0; // 人脸图像的ID号
int nTrainFaces = 0; // 训练图像的数目
int nEigens = 0; // 自己取的主要特征值数目
IplImage * pAvgTrainImg = 0; // 训练人脸数据的平均值
IplImage ** eigenVectArr = 0; // 投影矩阵,也即主特征向量
CvMat * eigenValMat = 0; // 特征值
CvMat * projectedTrainFaceMat = 0; // 训练图像的投影
char *filename[5]={"face1.jpg","face2.jpg","face3.jpg","face4.jpg","face5.jpg"};
static CvMemStorage* storage = 0;
static CvHaarClassifierCascade* cascade = 0;
int j=0;//统计记录的人脸数
char a[512]={0};
int a1,a2,a3,a4;
time_t timeBegin, timeEnd;
int timeuse;
//// 函数原型
void learn();
void doPCA();
void storeTrainingData();
int loadTrainingData(CvMat ** pTrainPersonNumMat);
int findNearestNeighbor(float * projectedTestFace);
int loadFaceImgArray(char * filename);
void printUsage();
int detect_and_draw( IplImage* image );
int recognize(IplImage *faceimg);
//主函数,主要包括学习和识别两个阶段,需要运行两次,通过命令行传入的参数区分
int main( int argc, char** argv )
{
CvCapture* capture = 0;
IplImage *frame, *frame_copy = 0;
int optlen = strlen("--cascade=");
char *cascade_name = "H://opencv-2.4.3//opencv//data//haarcascades//haarcascade_frontalface_alt2.xml";
//opencv装好后haarcascade_frontalface_alt2.xml的路径,
//也可以把这个文件拷到你的工程文件夹下然后不用写路径名cascade_name= "haarcascade_frontalface_alt2.xml";
//或者cascade_name ="C:\\Program Files\\OpenCV\\data\\haarcascades\\haarcascade_frontalface_alt2.xml"
cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );
if( !cascade )
{
fprintf( stderr, "ERROR: Could not load classifier cascade\n" );
fprintf( stderr,
"Usage: facedetect --cascade=\"
return -1;
}
storage = cvCreateMemStorage(0);
capture = cvCreateCameraCapture(-1);
cvNamedWindow( "result", 1 );
if( capture )
{ timeBegin = time(NULL);
learn();
for(;;)
{ timeEnd = time(NULL);
timeuse=timeEnd - timeBegin;//计算经过的时间,统计人数
if( !cvGrabFrame( capture ))
break;
frame = cvRetrieveFrame( capture );
if( !frame )
break;
if( !frame_copy )
frame_copy = cvCreateImage( cvSize(frame->width,frame->height),
IPL_DEPTH_8U, frame->nChannels );
if( frame->origin == IPL_ORIGIN_TL )//如果图像的起点在左上角
cvCopy( frame, frame_copy, 0 );
else
cvFlip( frame, frame_copy, 0 );//如果图像的起点不在左上角,而在左下角时,进行X轴对称
detect_and_draw( frame_copy ); //检测并且识别
if( cvWaitKey( 10 ) >= 0 )
break;
}
cvReleaseImage( &frame_copy );
cvReleaseCapture( &capture );
}
else
{
printf("Cannot read from CAM");
return -1;
}
cvDestroyWindow("result");
return 0;
}
//学习阶段代码
void learn()
{
int i, offset;
//加载训练图像集
nTrainFaces = loadFaceImgArray("train.txt");
if( nTrainFaces < 2 )
{
fprintf(stderr,
"Need 2 or more training faces\n"
"Input file contains only %d\n", nTrainFaces);
return;
}
// 进行主成分分析
doPCA();
//将训练图集投影到子空间中
projectedTrainFaceMat = cvCreateMat( nTrainFaces, nEigens, CV_32FC1 );
offset = projectedTrainFaceMat->step / sizeof(float);
for(i=0; i
//int offset = i * nEigens;
cvEigenDecomposite(
faceImgArr[i],
nEigens,
eigenVectArr,
0, 0,
pAvgTrainImg,
//projectedTrainFaceMat->data.fl + i*nEigens);
projectedTrainFaceMat->data.fl + i*offset);
}
//将训练阶段得到的特征值,投影矩阵等数据存为.xml文件,以备测试时使用
storeTrainingData();
}
//加载保存过的训练结果
int loadTrainingData(CvMat ** pTrainPersonNumMat)
{
CvFileStorage * fileStorage;
int i;
fileStorage = cvOpenFileStorage( "facedata.xml", 0, CV_STORAGE_READ );
if( !fileStorage )
{
fprintf(stderr, "Can't open facedata.xml\n");
return 0;
}
nEigens = cvReadIntByName(fileStorage, 0, "nEigens", 0);
nTrainFaces = cvReadIntByName(fileStorage, 0, "nTrainFaces", 0);
*pTrainPersonNumMat = (CvMat *)cvReadByName(fileStorage, 0, "trainPersonNumMat", 0);
eigenValMat = (CvMat *)cvReadByName(fileStorage, 0, "eigenValMat", 0);
projectedTrainFaceMat = (CvMat *)cvReadByName(fileStorage, 0, "projectedTrainFaceMat", 0);
pAvgTrainImg = (IplImage *)cvReadByName(fileStorage, 0, "avgTrainImg", 0);
eigenVectArr = (IplImage **)cvAlloc(nTrainFaces*sizeof(IplImage *));
for(i=0; i
char varname[200];
sprintf( varname, "eigenVect_%d", i );
eigenVectArr[i] = (IplImage *)cvReadByName(fileStorage, 0, varname, 0);
}
cvReleaseFileStorage( &fileStorage );
return 1;
}
//存储训练结果
void storeTrainingData()
{
CvFileStorage * fileStorage;
int i;
fileStorage = cvOpenFileStorage( "facedata.xml", 0, CV_STORAGE_WRITE );
//存储特征值,投影矩阵,平均矩阵等训练结果
cvWriteInt( fileStorage, "nEigens", nEigens );
cvWriteInt( fileStorage, "nTrainFaces", nTrainFaces );
cvWrite(fileStorage, "trainPersonNumMat", personNumTruthMat, cvAttrList(0,0));
cvWrite(fileStorage, "eigenValMat", eigenValMat, cvAttrList(0,0));
cvWrite(fileStorage, "projectedTrainFaceMat", projectedTrainFaceMat, cvAttrList(0,0));
cvWrite(fileStorage, "avgTrainImg", pAvgTrainImg, cvAttrList(0,0));
for(i=0; i
char varname[200];
sprintf( varname, "eigenVect_%d", i );
cvWrite(fileStorage, varname, eigenVectArr[i], cvAttrList(0,0));
}
cvReleaseFileStorage( &fileStorage );
}
//寻找最接近的图像
int findNearestNeighbor(float * projectedTestFace)
{
double leastDistSq = DBL_MAX; //定义最小距离,并初始化为无穷大
int i, iTrain, iNearest = 0;
for(iTrain=0; iTrain
double distSq=0;
for(i=0; i
float d_i =
projectedTestFace[i] -
projectedTrainFaceMat->data.fl[iTrain*nEigens + i];
distSq += d_i*d_i / eigenValMat->data.fl[i]; // Mahalanobis算法计算的距离,差的距离的平方除以平均脸的特征值
// distSq += d_i*d_i; // Euclidean算法计算的距离
}
if(distSq < leastDistSq)
{
leastDistSq = distSq;
iNearest = iTrain;
}
}
//printf("leastdistsq==%f",leastDistSq);
return iNearest;
}
//主成分分析
void doPCA()
{
int i;
CvTermCriteria calcLimit;
CvSize faceImgSize;
// 自己设置主特征值个数
nEigens = nTrainFaces-1;
//分配特征向量存储空间
faceImgSize.width = faceImgArr[0]->width;
faceImgSize.height = faceImgArr[0]->height;
eigenVectArr = (IplImage**)cvAlloc(sizeof(IplImage*) * nEigens); //分配个数为住特征值个数
for(i=0; i
//分配主特征值存储空间
eigenValMat = cvCreateMat( 1, nEigens, CV_32FC1 );
// 分配平均图像存储空间
pAvgTrainImg = cvCreateImage(faceImgSize, IPL_DEPTH_32F, 1);
// 设定PCA分析结束条件
calcLimit = cvTermCriteria( CV_TERMCRIT_ITER, nEigens, 1);//最大迭代次数为nEigens
// 计算平均图像,特征值,特征向量
cvCalcEigenObjects(
nTrainFaces,
(void*)faceImgArr,
(void*)eigenVectArr,
CV_EIGOBJ_NO_CALLBACK,
0,
0,
&calcLimit,
pAvgTrainImg,
eigenValMat->data.fl//存储求得的eigenvalue
);
cvNormalize(eigenValMat, eigenValMat, 1, 0, CV_L1, 0);
}
//加载txt文件的列举的图像
int loadFaceImgArray(char * filename)
{
FILE * imgListFile = 0;
char imgFilename[512];
int iFace, nFaces=0;
if( !(imgListFile = fopen(filename, "r")) )
{
fprintf(stderr, "Can\'t open file %s\n", filename);
return 0;
}
// 统计人脸数
while( fgets(imgFilename, 512, imgListFile) ) ++nFaces;//char *fgets(char *buf, int bufsize, FILE *stream);从文件结构体指针stream中读取数据,每次读取一行。读取的数据保存在buf指向的字符数组中,每次最多读取bufsize-1个字符(第bufsize个字符赋'\0'),如果文件中的该行,不足bufsize个字符,则读完该行就结束。如果函数读取成功,则返回指针buf,失败则返回NULL。
rewind(imgListFile);//将文件内部的位置指针重新指向一个流(数据流/文件)的开头
// 分配人脸图像存储空间和人脸ID号存储空间
faceImgArr = (IplImage **)cvAlloc( nFaces*sizeof(IplImage *) );
personNumTruthMat = cvCreateMat( 1, nFaces, CV_32SC1 );//CvMat* cvCreateMat( int rows, int cols, int type );
for(iFace=0; iFace
// 从文件中读取序号和人脸名称
fscanf(imgListFile,
"%d %s", personNumTruthMat->data.i+iFace, imgFilename);// fscanf(FILE *stream, char *format,[argument...])功 能: 从一个流中执行格式化输入,fscanf遇到空格和换行时结束
// 加载人脸图像
faceImgArr[iFace] = cvLoadImage(imgFilename, CV_LOAD_IMAGE_GRAYSCALE);
if( !faceImgArr[iFace] )
{
fprintf(stderr, "Can\'t load image from %s\n", imgFilename);
return 0;
}
}
fclose(imgListFile);
return nFaces;
}
//
void printUsage()
{
printf("Usage: eigenface
" Valid commands are\n"
" train\n"
" test\n");
}
int detect_and_draw( IplImage* img )
{
CvFont font;
cvInitFont( &font, CV_FONT_VECTOR0,1, 1, 0, 1, 8);
static CvScalar colors[] =
{
{{0,0,255}},
{{0,128,255}},
{{0,255,255}},
{{0,255,0}},
{{255,128,0}},
{{255,255,0}},
{{255,0,0}},
{{255,0,255}}
};
double scale = 1.3;
IplImage* gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );
IplImage* small_img = cvCreateImage( cvSize( cvRound (img->width/scale),
cvRound (img->height/scale)),
8, 1 );
int i,personnum=0;
cvCvtColor( img, gray, CV_BGR2GRAY );
cvResize( gray, small_img, CV_INTER_LINEAR );
cvEqualizeHist( small_img, small_img );
cvClearMemStorage( storage );
if( cascade )
{
double t = (double)cvGetTickCount();
CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,
1.1, 2, 0/*CV_HAAR_DO_CANNY_PRUNING*/,
cvSize(30, 30) );
t = (double)cvGetTickCount() - t;
// printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );
IplImage* temp_img=cvCreateImage(cvSize(92,112),8,1);
for( i = 0; i < (faces ? faces->total : 0); i++ )
{
CvRect* r = (CvRect*)cvGetSeqElem( faces, i );
IplImage *dst=cvCreateImage(cvSize(r->width,r->height),8,1);//cvsize只能选取r->width,r->height不能再后面*scale或+100
CvPoint p1;
p1.x=cvRound((r->x)*scale);
p1.y=cvRound((r->y)*scale);
CvPoint p2;
p2.x=cvRound((r->x+r->width)*scale);
p2.y=cvRound((r->y+r->height)*scale);
cvRectangle(img,p1,p2,colors[i%8],3,8,0);
cvSetImageROI(small_img,*r);
cvCopy(small_img,dst);
cvResize(dst,temp_img);
cvEqualizeHist( temp_img, temp_img );
cvResetImageROI(small_img);
cvSaveImage(filename[i],temp_img);
cvReleaseImage(&dst);
//开始识别temp_img
personnum=recognize(temp_img);
if(personnum==1)
cvPutText(img, "Yanming" , cvPoint(20, 20), &font, CV_RGB(255,255,255));//将正确识别的人的姓名显示在屏幕上
}
}
cvShowImage( "result", img );
cvReleaseImage( &gray );
cvReleaseImage( &small_img );
return -1;
}
int recognize(IplImage *faceimg)
{
int i, nTestFaces = 0; // 测试人脸数
CvMat * trainPersonNumMat = 0; // 训练阶段的人脸数
float * projectedTestFace = 0;
// 加载保存在.xml文件中的训练结果
if( !loadTrainingData( &trainPersonNumMat ) ) return -3;
projectedTestFace = (float *)cvAlloc( nEigens*sizeof(float) );
int iNearest, nearest;
//将测试图像投影到子空间中
cvEigenDecomposite(
faceimg,
nEigens,
eigenVectArr,
0, 0,
pAvgTrainImg,
projectedTestFace);
//cvNormalize(projectedTestFace, projectedTestFace, 1, 0, CV_L1, 0);
iNearest = findNearestNeighbor(projectedTestFace);
nearest = trainPersonNumMat->data.i[iNearest];
printf("nearest = %d", nearest);
if(timeuse<=10)
{
if((nearest==1)|(nearest==11)|(nearest==111))//可以更改train.txt中训练图片的编号,这里将侧脸,仰脸,正脸都归为一起
a1++;
if(nearest==2)
a2++;
if(nearest==3)
a3++;
if(nearest==4)
a4++;
if(a1>7)//如果10s中识别的次数为6则认定为a1
{
printf("yanming\n");
return 1;
}
if(a2>6)
{printf("others\n");}
if(a3>6)
{printf("ma\n");}
if(a4>6)
{printf("ba\n");}
}
else
{
timeBegin=time(NULL);
a1=0;
a2=0;
a3=0;
a4=0;
return 0;
}
return -1;
}