分批次读取数据
数据模板:
源代码
-------------------------------------------------
import tensorflow as tf
import numpy as np
def readMyFileFormat(fileNameQueue):
reader = tf.TextLineReader()
key, value = reader.read(fileNameQueue)
record_defaults = [[1.0], [1.0], [1.0]]
x1, x2, x3 = tf.decode_csv(value, record_defaults=record_defaults)
features = tf.stack([x1, x2])
label = x3
return features, label
def inputPipeLine(fileNames=["Test.csv"], batchSize = 4, numEpochs = None):
fileNameQueue = tf.train.string_input_producer(fileNames, num_epochs = numEpochs)
example, label = readMyFileFormat(fileNameQueue)
min_after_dequeue = 8
capacity = min_after_dequeue + 3 * batchSize
exampleBatch, labelBatch = tf.train.shuffle_batch([example, label], batch_size=batchSize, num_threads=3, capacity=capacity, min_after_dequeue=min_after_dequeue)
return exampleBatch, labelBatch
featureBatch, labelBatch = inputPipeLine(["Test.csv"], batchSize=4)
with tf.Session() as sess:
# Start populating the filename queue.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
example, label = sess.run([featureBatch, labelBatch])
print(example, label)
coord.request_stop()
coord.join(threads)
sess.close()
出现错误:
C:/Users/User/PycharmProjects/Test/test.py
2017-09-25 15:04:46.598434: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-09-25 15:04:46.598711: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-25 15:04:46.598974: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-25 15:04:46.599224: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-25 15:04:46.599460: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-25 15:04:46.599708: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-09-25 15:04:46.599948: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-25 15:04:46.600168: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
[[ 7. 8.]
[ 2. 4.]
[ 1. 2.]
[ 1. 2.]] [ 11. 42. 10. 10.]
Traceback (most recent call last):
File "C:/Users/JZ/PycharmProjects/Test/test.py", line 30, in
coord.join(threads)
File "C:\Users\JZ\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\coordinator.py", line 389, in join
six.reraise(*self._exc_info_to_raise)
File "C:\Users\JZ\AppData\Local\Programs\Python\Python35\lib\site-packages\six.py", line 686, in reraise
raise value
File "C:\Users\JZ\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\queue_runner_impl.py", line 238, in _run
enqueue_callable()
File "C:\Users\JZ\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1063, in _single_operation_run
target_list_as_strings, status, None)
File "C:\Users\JZ\AppData\Local\Programs\Python\Python35\lib\contextlib.py", line 66, in __exit__
next(self.gen)
File "C:\Users\JZ\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Expect 3 fields but have 0 in record 0
[[Node: DecodeCSV = DecodeCSV[OUT_TYPE=[DT_FLOAT, DT_FLOAT, DT_FLOAT], field_delim=",", _device="/job:localhost/replica:0/task:0/cpu:0"](ReaderReadV2:1, DecodeCSV/record_defaults_0, DecodeCSV/record_defaults_1, DecodeCSV/record_defaults_2)]]
错误原因:很可能是CSV文件数据最后还有多余的行,例如我出现的原因
Similarly, you might want to check out your data file to see if there is any wrong with it, even if it is as trivial as "a blank line".
参考资料:
https://stackoverflow.com/questions/43781143/tensorflow-decode-csv-expect-3-fields-but-have-5-in-record-0-when-given-5-de
http://blog.csdn.net/yiqingyang2012/article/details/68485382
http://wiki.jikexueyuan.com/project/tensorflow-zh/how_tos/reading_data.html
tensorflow官方文档