mnist数据集在LeNet5卷积神经网络 学习总结

  • LeNet-5模型

LeNet-5模型总共有7层,下图为LeNet-5模型架构:

mnist数据集在LeNet5卷积神经网络 学习总结_第1张图片

  •  第一层:卷积层

输入为:32×32×1,由于过滤器尺寸为5×5,深度为6,步长为1,不使用全0填充。所以输出为:(32-5)÷1 +1=28,即28×28×6。本层有5×5×1×6+6=156个参数,由于下一层有28×28×6=4704个节点,每个节点和5×5=25个当前层节点相连,所以本层卷积层有4704×(25+1)=122304个连接。

  •  第二层:池化层

输入为:28×28×6,采用过滤器大小为2×2,步长为2,所以输出为:(28-2)÷2+1=14,即14×14×6。

  •  第三层:卷积层

输入为:14×14×6,由于过滤器尺寸为5×5,深度为16,步长为1,不使用全0填充。所以输出为:(14-5)÷1+1=10,即10×10×16。本层有5×5×6×16+16=2416个参数,有10×10×16×(5×5+1)=41600个连接。

  •  第四层:池化层

输入为:10×10×16,采用过滤器大小为2×2,步长为2,所以输出为:(10-2)÷2+1=5,即5×5×16。

  •  第五层:全连接层

输入为:5×5×16,如果将5×5×16矩阵节点拉成一个向量,本层输出节点个数:120,总共有5×5×16×120+120=48120个参数。

  •  第六层:全连接层

输入节点个数为120个,输出节点个数为84个,总共有120×84+84=10164个。

  •  第七层:全连接层

输入节点个数为84个,输出节点个数为10个,总共有84×10+10=850个。

通过TensorFlow的程序来实现一个类似LeNet-5模型的卷积神经网络来解决mnist数字识别问题。

LeNet-5前向传播过程:

文件名:mnist_cnn_inference.py

# -*- coding: utf-8 -*-
import tensorflow as tf

#设定神经网络的参数
INPUT_NODE = 784
OUTPUT_NODE = 10

IMAGE_SIZE = 28
NUM_CHANNELS = 1
NUM_LABELS = 10

#第一层卷积深度与尺寸
CONV1_DEEP = 32
CONV1_SIZE = 5

#第二层卷积深度与尺寸
CONV2_DEEP = 64
CONV2_SIZE = 5

#全连接层节点个数
FC_SIZE = 512

#定义前向传播的过程,这里添加一个新参数train,用于区分训练和测试过程,这个过程中使用到dropout
方法,可以防止过拟合,且dropout只在训练中使用。
def inference(input_tensor, train, regularizer):

    # 声明第一层神经网络的变量并完成前向传播过程
    with tf.variable_scope('layer1-conv1'):
        conv1_weights = tf.get_variable("weights", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],
                                        initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))

        # 使用边长为5, 深度为32的过滤器, 过滤器的移动步长是1, 且使用全零填充。
        conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))

    # 实现第二层池化层的前向传播过程
    # 使用全零填充,移动的步长为2,这一层的输入是上一层的输出,也就是28*28*32
    with tf.name_scope('layer2-pool1'):
        pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

    # 声明第三层的卷积变量并实现前向传播过程。这一层的输入为14*14*32的矩阵
    with tf.variable_scope('layer3-conv2'):
        conv2_weighs = tf.get_variable('weights', [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],
                                       initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv2_biases = tf.get_variable('bias', [CONV2_DEEP], initializer=tf.constant_initializer(0.0))

        # 使用边长为5, 深度为64的过滤器, 步长为1, 且使用全零填充
        conv2 = tf.nn.conv2d(pool1, conv2_weighs, strides=[1, 1, 1, 1], padding='SAME')
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))

    # 实现第四层池化层的前向传播过程
    # 这一层的输入是14*14*64的矩阵,输出是7*7*64的矩阵
    with tf.name_scope('layer4-pool2'):
        pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

    # 将第四层池化层的输出转化为第五层全连接层的输入格式
    pool_shape = pool2.get_shape().as_list()
    # 计算将矩阵拉直成向量的长度
    nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
    # 变成一个batch 的向量
    reshaped = tf.reshape(pool2, [-1, nodes])

    # 声明第五层全连接层的变量并实现前向传播过程
    with tf.variable_scope('layer5-fc1'):
        fc1_weights = tf.get_variable("weights", [nodes, FC_SIZE],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        # 只有全连接层的权重需要加入正则化
        if regularizer != None:
            tf.add_to_collection('losses', regularizer(fc1_weights))
        fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))

        fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
        if train: fc1 = tf.nn.dropout(fc1, 0.5)

    # 声明第六层全连接层的变量并实现前向传播过程
    with tf.variable_scope('layer6-fc2'):
        fc2_weights = tf.get_variable('weights', [FC_SIZE, NUM_LABELS],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None:
            tf.add_to_collection('losses', regularizer(fc2_weights))
        fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))
        logit = tf.matmul(fc1, fc2_weights) + fc2_biases
    # 返回最后前向传播的结果
    return logit

mnist在LeNet-5上训练:

文件名:mnist_cnn_train.py

# -*- coding: utf-8 -*-
import os
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 加载mnist_cnn_inference.py中定义的常量和前向传播的函数。
import mnist_cnn_inference

# 配置神经网络的参数。
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.05
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 6000
MOVING_AVERAGE_DECAY = 0.99

# 模型保存的路径和文件名
MODEL_SAVE_PATH = r".\cnn_model"
MODEL_NAME = "model.ckpt"

def train(mnist):
    # 定义输入输出placeholder。
    x = tf.placeholder(tf.float32,
                       [None,
                        mnist_cnn_inference.IMAGE_SIZE,
                        mnist_cnn_inference.IMAGE_SIZE,
                        mnist_cnn_inference.NUM_CHANNELS],
                       name='x-input')
    y_ = tf.placeholder(tf.float32, [None, mnist_cnn_inference.OUTPUT_NODE], name='y-input')

    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
    # 直接使用mnist_inference.py中定义的前向传播过程
    y = mnist_cnn_inference.inference(x, True, regularizer)
    global_step = tf.Variable(0, trainable=False)

    # 定义损失函数、学习率、滑动平均操作以及训练过程
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    variable_averages_op = variable_averages.apply(tf.trainable_variables())
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
    learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,
                                               global_step,
                                               mnist.train.num_examples / BATCH_SIZE,
                                               LEARNING_RATE_DECAY)
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    with tf.control_dependencies([train_step, variable_averages_op]):
        train_op = tf.no_op(name='train')


    # 初始化TensorFlow持久化类
    saver = tf.train.Saver()
    with tf.Session() as sess:
        tf.global_variables_initializer().run()

        # 在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独
        # 立的程序来完成。
        for i in range(TRAINING_STEPS):
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            reshaped_xs = np.reshape(xs, [-1, mnist_cnn_inference.IMAGE_SIZE, mnist_cnn_inference.IMAGE_SIZE,
                                          mnist_cnn_inference.NUM_CHANNELS])
            _, loss_value, step = sess.run([train_op, loss, global_step],
                                           feed_dict={x: reshaped_xs, y_: ys})
            # 每1000轮保存一次模型
            if i % 1000 == 0:

                # 输出当前的训练情况。这里只输出了模型在当前训练batch上的损失
                # 函数大小。通过损失函数的大小可以大概了解训练的情况。在验证数
                # 据集上正确率的信息会有一个单独的程序来生成
                print("After %d training step(s), loss on training "
                      "batch is %g." % (step, loss_value))

                # 保存当前的模型。注意这里给出了global_step参数,这样可以让每个
                # 被保存的模型的文件名末尾加上训练的轮数,比如“model.ckpt-1000”,
                # 表示训练1000轮之后得到的模型。
                saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)

def main(argv=None):
    mnist = input_data.read_data_sets(r".\data", one_hot=True)
    train(mnist)

if __name__ == "__main__":
    tf.app.run()

 mnist测试集在模型上测试

文件名:mnist_cnn_eval.py

# -*- coding: utf-8 -*-
import time
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 加载mnist_inference.py 和mnist_train.py中定义的常量和函数。
import mnist_cnn_inference
import mnist_cnn_train

# 每10秒加载一次最新的模型, 并在测试数据上测试最新的正确率
EVAL_INTERVAL_SECS = 10
BATCH_SIZE = 1000


def evaluate(mnist):
    with tf.Graph().as_default() as g:
        # 定义输入输出的格式
        x = tf.placeholder(tf.float32, [BATCH_SIZE, mnist_cnn_inference.IMAGE_SIZE, mnist_cnn_inference.IMAGE_SIZE,
                                        mnist_cnn_inference.NUM_CHANNELS], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, mnist_cnn_inference.OUTPUT_NODE], name='y-input')
        xs = mnist.validation.images[:1000]
        reshaped_xs = np.reshape(xs, [BATCH_SIZE, mnist_cnn_inference.IMAGE_SIZE, mnist_cnn_inference.IMAGE_SIZE,
                                      mnist_cnn_inference.NUM_CHANNELS])
        validate_feed = {x: reshaped_xs,
                         y_: mnist.validation.labels[:1000]}
        # 前向传播
        y = mnist_cnn_inference.inference(x, False, None)
        # 使用前向传播的结果计算正确率
        correct_prediction = tf.equal(tf.arg_max(y, 1), tf.arg_max(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

        # 通过变量重命名的方式来加载模型
        variable_averages = tf.train.ExponentialMovingAverage(mnist_cnn_train.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        # 每隔EVAL_INTERVAL_SECS秒调用一次计算正确率的过程以检测训练过程中正确率的变化
        while True:
            with tf.Session() as sess:
                ckpt = tf.train.get_checkpoint_state(mnist_cnn_train.MODEL_SAVE_PATH)
                if ckpt and ckpt.model_checkpoint_path:
                    # 加载模型
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    # 通过文件名得到模型保存时迭代的轮数
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                    accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
                    print("After %s training step(s), validation ""accuracy = %g" % (global_step, accuracy_score))
                else:
                    print('No checkpoint file found')
                    return
                time.sleep(EVAL_INTERVAL_SECS)


def main(argv=None):
    mnist = input_data.read_data_sets(r".\data", one_hot=True)
    evaluate(mnist)


if __name__ == '__main__':
    tf.app.run()
  • 总结

一些经典的用于图片分类问题的卷积神经网络架构:

输入层→(卷积层+→池化层?)+→全连接层+

池化层虽然可以起到减少参数防止过拟合,但在部分论文中发现可以直接调整卷积层步长来完成;

在过滤器的深度上,大部分卷积神经网路都采用逐层递增的方;

卷积层的步长一般为1,池化层用的最多的是最大池化;

池化层过滤器大小一般为2或3,移动步长一般也为2或3。

你可能感兴趣的:(深度学习)