基于红黑树的NavigableMap,非线程安全。
1)containsKey、get、put、remove操作的时间复杂度为log(n);
2)迭代器fail-fast。
红黑树:
private transient Entry root = null; // 根节点
// tree节点
static final class Entry implements Map.Entry {
K key;
V value;
Entry left = null;
Entry right = null;
Entry parent;
boolean color = BLACK;
/**
* Make a new cell with given key, value, and parent, and with
* {@code null} child links, and BLACK color.
*/
Entry(K key, V value, Entry parent) {
this.key = key;
this.value = value;
this.parent = parent;
}
/**
* Returns the key.
*
* @return the key
*/
public K getKey() {
return key;
}
/**
* Returns the value associated with the key.
*
* @return the value associated with the key
*/
public V getValue() {
return value;
}
/**
* Replaces the value currently associated with the key with the given
* value.
*
* @return the value associated with the key before this method was
* called
*/
public V setValue(V value) {
V oldValue = this.value;
this.value = value;
return oldValue;
}
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry,?> e = (Map.Entry,?>)o;
return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
}
public int hashCode() {
int keyHash = (key==null ? 0 : key.hashCode());
int valueHash = (value==null ? 0 : value.hashCode());
return keyHash ^ valueHash;
}
public String toString() {
return key + "=" + value;
}
}
// 无参构造
public TreeMap() {
comparator = null;
}
// 带comparator构造
public TreeMap(Comparator super K> comparator) {
this.comparator = comparator;
}
// 带Map构造
public TreeMap(Map extends K, ? extends V> m) {
comparator = null;
putAll(m);
}
// 带SortedMap构造
public TreeMap(SortedMap m) {
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
}
// 根据key排序,获取第一个Entry
// TreeMap为空则返回null
final Entry getFirstEntry() {
Entry p = root; // 从根节点开始
if (p != null)
while (p.left != null)
p = p.left; // 一直往左子树找
return p;
}
// 根据key排序,获取最后一个Entry
// TreeMap为空则返回null
final Entry getLastEntry() {
Entry p = root;
if (p != null)
while (p.right != null)
p = p.right;
return p;
}
// 获取key关联的Entry,没有则返回null
final Entry getEntry(Object key) {
// Offload comparator-based version for sake of performance
if (comparator != null)
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
Comparable super K> k = (Comparable super K>) key;
Entry p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
}
// 获取>=key最小的Enntry
final Entry getCeilingEntry(K key) {
Entry p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp < 0) {
if (p.left != null)
p = p.left;
else
return p;
} else if (cmp > 0) {
if (p.right != null) {
p = p.right;
} else {
Entry parent = p.parent;
Entry ch = p;
while (parent != null && ch == parent.right) {
ch = parent;
parent = parent.parent;
}
return parent;
}
} else
return p;
}
return null;
}
// 获取<=key最大的Enntry
final Entry getFloorEntry(K key) {
Entry p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp > 0) {
if (p.right != null)
p = p.right;
else
return p;
} else if (cmp < 0) {
if (p.left != null) {
p = p.left;
} else {
Entry parent = p.parent;
Entry ch = p;
while (parent != null && ch == parent.left) {
ch = parent;
parent = parent.parent;
}
return parent;
}
} else
return p;
}
return null;
}
// 获取>key最小的Enntry
final Entry getHigherEntry(K key) {
Entry p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp < 0) {
if (p.left != null)
p = p.left;
else
return p;
} else {
if (p.right != null) {
p = p.right;
} else {
Entry parent = p.parent;
Entry ch = p;
while (parent != null && ch == parent.right) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
return null;
}
// 获取 getLowerEntry(K key) {
Entry p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp > 0) {
if (p.right != null)
p = p.right;
else
return p;
} else {
if (p.left != null) {
p = p.left;
} else {
Entry parent = p.parent;
Entry ch = p;
while (parent != null && ch == parent.left) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
return null;
}
// 将Entry封装成不可变的SimpleImmutableEntry
static Map.Entry exportEntry(TreeMap.Entry e) {
return (e == null) ? null :
new AbstractMap.SimpleImmutableEntry<>(e);
}
// 查找指定Entry的后继节点
static TreeMap.Entry successor(Entry t) {
if (t == null)
return null;
else if (t.right != null) {
Entry p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {
Entry p = t.parent;
Entry ch = t;
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
}
// 查找指定Entry的前驱节点
static Entry predecessor(Entry t) {
if (t == null)
return null;
else if (t.left != null) {
Entry p = t.left;
while (p.right != null)
p = p.right;
return p;
} else {
Entry p = t.parent;
Entry ch = t;
while (p != null && ch == p.left) {
ch = p;
p = p.parent;
}
return p;
}
}
private static boolean colorOf(Entry p) {
return (p == null ? BLACK : p.color);
}
private static Entry parentOf(Entry p) {
return (p == null ? null: p.parent);
}
private static void setColor(Entry p, boolean c) {
if (p != null)
p.color = c;
}
private static Entry leftOf(Entry p) {
return (p == null) ? null: p.left;
}
private static Entry rightOf(Entry p) {
return (p == null) ? null: p.right;
}
// 左旋转
private void rotateLeft(Entry p) {
if (p != null) {
Entry r = p.right;
p.right = r.left;
if (r.left != null)
r.left.parent = p;
r.parent = p.parent;
if (p.parent == null)
root = r;
else if (p.parent.left == p)
p.parent.left = r;
else
p.parent.right = r;
r.left = p;
p.parent = r;
}
}
// 右旋转
private void rotateRight(Entry p) {
if (p != null) {
Entry l = p.left;
p.left = l.right;
if (l.right != null) l.right.parent = p;
l.parent = p.parent;
if (p.parent == null)
root = l;
else if (p.parent.right == p)
p.parent.right = l;
else p.parent.left = l;
l.right = p;
p.parent = l;
}
}
步骤:
1)从root节点开始,基于key的排序比较,进行查找;
2)若已存在相等key的键值对节点,则替换新的value,返回旧value;
3)否则,根据key、value创建新节点,将其添加到TreeMap中来;
4)因有新节点添加,所以需保持红黑树平衡。
public V put(K key, V value) {
Entry t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry parent;
// split comparator and comparable paths
Comparator super K> cpr = comparator;
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
Comparable super K> k = (Comparable super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
// 根据key、value创建新节点,添加到TreeMap中来
Entry e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e); // 增加新节点,调整红黑树平衡
size++;
modCount++;
return null;
}
private void fixAfterInsertion(Entry x) {
x.color = RED;
while (x != null && x != root && x.parent.color == RED) {
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
Entry y = rightOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == rightOf(parentOf(x))) {
x = parentOf(x);
rotateLeft(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
} else {
Entry y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == leftOf(parentOf(x))) {
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
root.color = BLACK;
}
步骤:
1)从root节点开始,基于key的排序比较,进行查找;
2)若不存在相等key关联的键值对节点,则返回null;
3)否则,删除相等key关联的键值对节点;
4)保持红黑树平衡;
5)返回旧value。
public V remove(Object key) {
Entry p = getEntry(key);
if (p == null)
return null;
V oldValue = p.value;
deleteEntry(p);
return oldValue;
}
/**
* Delete node p, and then rebalance the tree.
*/
private void deleteEntry(Entry p) {
modCount++;
size--;
// If strictly internal, copy successor's element to p and then make p
// point to successor.
if (p.left != null && p.right != null) {
Entry s = successor(p);
p.key = s.key;
p.value = s.value;
p = s;
} // p has 2 children
// Start fixup at replacement node, if it exists.
Entry replacement = (p.left != null ? p.left : p.right);
if (replacement != null) {
// Link replacement to parent
replacement.parent = p.parent;
if (p.parent == null)
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement;
// Null out links so they are OK to use by fixAfterDeletion.
p.left = p.right = p.parent = null;
// Fix replacement
if (p.color == BLACK)
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
root = null;
} else { // No children. Use self as phantom replacement and unlink.
if (p.color == BLACK)
fixAfterDeletion(p);
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}
private void fixAfterDeletion(Entry x) {
while (x != root && colorOf(x) == BLACK) {
if (x == leftOf(parentOf(x))) {
Entry sib = rightOf(parentOf(x));
if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateLeft(parentOf(x));
sib = rightOf(parentOf(x));
}
if (colorOf(leftOf(sib)) == BLACK &&
colorOf(rightOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(rightOf(sib)) == BLACK) {
setColor(leftOf(sib), BLACK);
setColor(sib, RED);
rotateRight(sib);
sib = rightOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(rightOf(sib), BLACK);
rotateLeft(parentOf(x));
x = root;
}
} else { // symmetric
Entry sib = leftOf(parentOf(x));
if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateRight(parentOf(x));
sib = leftOf(parentOf(x));
}
if (colorOf(rightOf(sib)) == BLACK &&
colorOf(leftOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(leftOf(sib)) == BLACK) {
setColor(rightOf(sib), BLACK);
setColor(sib, RED);
rotateLeft(sib);
sib = leftOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(leftOf(sib), BLACK);
rotateRight(parentOf(x));
x = root;
}
}
}
setColor(x, BLACK);
}
步骤:
1)从root节点开始,基于key的排序比较,进行查找;
2)若不存在相等key关联的键值对节点,则返回null;
3)否则,相等key关联的键值对节点的value。
public V get(Object key) {
Entry p = getEntry(key);
return (p==null ? null : p.value);
}
final Entry getEntry(Object key) {
// Offload comparator-based version for sake of performance
if (comparator != null)
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
Comparable super K> k = (Comparable super K>) key;
Entry p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
}
PrivateEntryIterator为基础迭代器:
abstract class PrivateEntryIterator implements Iterator {
Entry next;
Entry lastReturned;
int expectedModCount;
PrivateEntryIterator(Entry first) {
expectedModCount = modCount;
lastReturned = null;
next = first;
}
public final boolean hasNext() {
return next != null;
}
final Entry nextEntry() {
Entry e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = successor(e);
lastReturned = e;
return e;
}
final Entry prevEntry() {
Entry e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = predecessor(e);
lastReturned = e;
return e;
}
public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
// deleted entries are replaced by their successors
if (lastReturned.left != null && lastReturned.right != null)
next = lastReturned;
deleteEntry(lastReturned);
expectedModCount = modCount;
lastReturned = null;
}
}
基于红黑树的特性,实现log(n)的快速查找,当然付出的成本就是需要更大的内存空间。