- MTCNN人脸检测算法
samuelwang_ccnu
深度学习
人脸检测是指识别数字图像中的人脸。人脸检测可以视为目标检测的一种特殊情况。在目标检测中,任务是查找图像中特定类的所有对象的位置和大小。例如行人和汽车。在人脸检测中应用较广的算法就是MTCNN(Multi-taskCascadedConvolutionalNetworks的缩写)。MTCNN算法是一种基于深度学习的人脸检测和人脸对齐方法,它可以同时完成人脸检测和人脸对齐的任务,相比于传统的算法,它的
- 人脸识别基本流程
佛系调参
人工智能深度学习
人脸识别一般包括:人脸检测、人脸对齐、人脸特征提取和人脸比对四个步骤人脸检测:检测到人脸的位置人脸对齐:同一个人采集到的不同图像可能呈现出不同的姿态和表情等,这种情况是不利于人脸特征提取的。所以有必要将人脸图像都变换到一个统一的角度或姿态,这就是人脸对齐。具体的是首先进行人脸检测(图1(a)),然后进行人脸关键点检测(图1(b)),最后利用这些对应的关键点通过相似变换(SimilarityTran
- 人脸识别 基于MTCNN网络的人脸检测与对齐算法(MTCNN代码复现)
郭庆汝
MTCNN人脸识别
人脸识别基于MTCNN网络的人脸检测与对齐算法(MTCNN代码复现)论文背景人脸检测与人脸对齐意义论文的研究成果人脸检测的研究趋势论文采用的方法思路阶段一阶段二:阶段三卷积网络设计层面Loss损失函数的设定面部分类边界框回归人脸关键点定位L2范数在线困难挖掘论文实验数据集网络模块代码实现激活函数P-Net模块代码R-Net模块代码O-Net图像处理过程中图像金字塔MTCNN项目代码实现关于训练流程
- python 人脸识别项目insightface
何时摆脱命运的束缚
人脸识别python人工智能深度学习
一、项目简介InsightFace是一个用于2D和3D人脸分析的集成Python库。InsightFace有效地实现了各种最先进的人脸识别、人脸检测和人脸对齐算法,并针对训练和部署进行了优化。项目地址:https://github.com/deepinsight/insightface截止本博文发布日,项目Star数达20k。二、项目安装环境:ubuntu18cuda11.71、安装insight
- 优化的实时换脸项目——DeepFaceLive
m1chiru
python
DeepFaceLive是一款基于人工智能技术的换脸工具,可以实现实时面部捕捉和换脸效果。它利用深度学习和计算机视觉算法,能够以惊人的准确度和速度将脸部特征无缝地映射到任何人的脸上。DeepFaceLive的特点是可以实时换脸,让用户通过网络摄像头应用面部过滤器,与大多数基于视频的流媒体和信息服务结合使用。同时,它也支持人脸检测、人脸对齐、人脸标记等功能,可以应用于预先录制的视频。DeepFace
- 【数据集处理】FFHQ如何进行人脸对齐,Aligned and cropped images at 1024×1024
XD742971636
深度学习机器学习大数据人工智能人脸对齐FFHQ
什么是人脸对齐?人脸对齐是一种图像处理技术,旨在将图像中的人脸部分对齐到一个标准位置或形状。在许多情况下,这通常涉及将眼睛、鼻子和嘴巴等关键点对齐到特定的位置。通过这种方式,所有的人脸图像可以有一个一致的方向和尺寸,从而方便后续的处理和分析。人脸对齐用来做什么?标准化:通过对齐,可以使所有的人脸图像具有相同的方向、尺寸和比例,这有助于后续的分析任务,如人脸识别、表情识别等。增强特征:对齐可以使得图
- 【 人脸关键点检测评价指标:NME】
冰雪storm
人工智能python深度学习机器学习
人脸关键点检测评价指标:NMENME(NormalizationMeanError),通常用于评估人脸对齐算法的质量。每个图像的NME定义为:所有预测点与ground-truth之间的L2Norm,除以(关键点个数*两只眼睛之间的距离),具体计算公式如下:NME(P,P^)=1M∑i=1M∣∣pi−p^i∣∣2dNME(P,\hatP)=\frac{1}{M}\sum_{i=1}^{M}\frac
- Python-dlib实现人脸提取和分割
even蛋黄酱
python开发语言
效果→参考资料和资源GitHub-Onwaier/SegfaceAndAlignByDlib:用dlib实现脸部分割和人脸对齐shape_predictor_68_face_landmarks.dat下载地址_shape_predictor_68_face_landmarks.dat下载-CSDN博客未运行的参考资料dlib实现脸部分割与人脸对齐-知乎单图片读取并另存人脸图"""代码功能:1.用d
- 基于关键点的人脸对齐方法
菜鸟的追梦旅行
目标检测深度学习人脸识别
人脸旋转校正的一般步骤:1.人脸检测:首先使用人脸检测算法来检测图像中的人脸位置。2.人脸关键点检测:对于每张检测到的人脸,使用人脸关键点检测算法来检测人脸中的关键点,如眼睛、鼻子、嘴巴等。(项目中可以使用yolopose检测的人脸区域关键点来替代上面2步)3.计算旋转角度:根据检测到的关键点位置,计算人脸的旋转角度。常见的方法是通过计算眼睛关键点的斜率来确定人脸的倾斜角度。可以使用反正切函数来计
- 基于Python+OpenCV+dlib+Tensorflow深度学习的人脸表情识别系统
雅致教育
pythonyolo计算机毕业设计python深度学习opencv
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 人脸表情识别是一种重要的计算机视觉任务,它涉及到对人脸图像中的表情进行分类和理解。在这个系统中,我们将使用Python、OpenCV、dlib和Tensorflow来实现深度学习模型,以识别人脸表情。一、系统概述人脸表情识别系统主要分为以下几个部分:人脸检测、人脸对齐、特征
- 人脸对齐-综述——Face Alignment In-the-Wild: A Survey
米个蛋
计算机视觉
本文主要是这篇文章的翻译,后面增加具体的算法理解。FaceAlignmentIn-the-Wild:ASurveyComputerVisionandImageUnderstandingVolume162,September2017,Pages1-22https://www.sciencedirect.com/science/article/pii/S1077314217301455--------
- 基于人脸5个关键点的人脸对齐(人脸纠正)
傲笑风
pytorchpytorchpython深度学习人脸识别
摘要:人脸检测模型输出人脸目标框坐标和5个人脸关键点,在进行人脸比对前,需要对检测得到的人脸框进行对齐(纠正),本文将通过5个人脸关键点信息对人脸就行对齐(纠正)。一、输入图像就行人脸检测:人脸检测模型输出每个人脸的目标框坐标以及5个关键点坐标。二、利用5个特征点进行人脸对齐(纠正)人脸1:人脸1纠正结果:人脸2:人脸2纠正后结果:人脸3:人脸3纠正后结果:三、人脸对齐(纠正)代码示例:impor
- A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark
易大飞
CV人脸对齐人脸检测人脸对齐
这是一篇2017年的cvpr上关于人脸对齐的文章。这篇文章整体上思路比较清晰,图1的流程比较简明,整个图就能够表明整个核心算法一切。
- 人脸识别的三部曲
AI剑客
AI
人脸识别三部曲:一,人脸检测-确认图片及影像是否包含人脸实现:传统的算法,深度学习算法二,人脸特征点检测(也称为人脸对齐操作)最关的一步,不同的公司有不同的特征点集合,有68点,也有100多点的,越多越精细,人脸识别的准确度越高,错误识别率越低。三,人脸识别根据人脸特征检测,建立人脸特征数据库。人脸识别其实就是人脸特征比对,找到最相似的(透过欧氏距离等),且相似度大于设定阈值的。
- 7k字综述常见人脸recognition方法及系统(科普版)
猛码Memmat
#detection算法人脸识别识别
文章目录0.导读1.人脸识别的目标2.人脸识别的流程3.人脸检测4.人脸检测的评价指标4.1速度4.1.1速度是指定分辨率下的检测速度4.1.2速度是否受统一个画面中的人脸个数影响4.2精度4.2.1ACC精度4.2.2ROC受试者工作特征曲线5.人脸对齐6.人脸特征提取算法7.人脸特征点提取的评价指标7.1精度8.人脸比对8.1目的8.2难点9.人脸比对的方法9.1传统方法9.2深度方法10.人
- 人脸识别中的深度学习
-小透明-
计算机视觉计算机视觉深度学习人工智能
深度学习在人脸识别中的应用人脸识别的过程包括:人脸检测人脸对齐特征提取(在数学上,实质上是:空间变换)特征度量其中,特征提取与度量,是人脸识别问题中的关键问题,也是相关研究的难点之一。传统方法在人脸识别中的弱点传统人脸识别方法,主要利用了手工特征对面部信息进行归纳提取,将人脸图像变换到新的空间进行辨识比对。而实际场景中人脸的多样性(妆容、光照、角度、配饰、表情、年龄变化等)信息,导致了手工特征无法
- 程序员教你用python替代繁琐复杂的ps步骤实现图片合成换脸
Python末末
具体过程分为以下四步面部标志提取dlib提供了实现面部特征提取的接口:get_landmarks用于检测面部关键特征点的坐标普式分析法(ProcrustesAnalysis)计算人脸对齐映射矩阵仿射变换向量的平移放缩及旋转变换图像的平移放缩及旋转都是原始图像的坐标进行计算。怎么找到映射矩阵M便是普式分析法输出是矩阵Mtransformation_from_points()利用opencv及计算得到
- 17.2.21 人脸识别中68个特征点的检测顺序
MQTXWD
人脸识别脸部识别人脸特征点
对于一些常用的人脸库常常会提供对应的人脸框的位置以及人脸的特征点的坐标。虽然往往会有68个特征点的坐标,但是如果是用于人脸对齐,并不需要用到所有的点坐标。所以知道特征点的检测顺序能够帮助我们很快的找到我们所需要的特定点坐标。如图1所示,图中将68个特征点的检测顺序一次标注了出来。(图片摘自http://blog.csdn.net/zmdsjtu/article/details/53454071)当
- python+TensorFlow实现人脸识别智能小程序的项目(包含TensorFlow版本与Pytorch版本)(二)
郭庆汝
pythontensorflowpytorch
python+TensorFlow实现人脸识别智能小程序的项目(包含TensorFlow版本与Pytorch版本)(二)1、人脸业务流程1、人脸检测(FaceDetection)问题2、人脸对齐(FaceAlignment)问题3、人脸属性(FaceAttribute)问题4、人脸比对(FaceCompare)问题2、人脸识别相关数据集3、人脸检测1、人脸检测需要解决的问题2、小人脸检测问题4、人
- AI换脸-简单换脸、人脸对齐、关键点定位与画图
ironceo
opencvpython人工智能
```bash简单换脸、人脸对齐、关键点定位与画图有人将其进行中文翻译也有将其进行一定改编有以下两个案例:1.《川普撞脸希拉里(基于OpenCV的面部特征交换)-2》变脸变脸贴图:从这张:这里写图片描述变为这张:这里写图片描述因为原文里面内容丰富,我觉得可以提取出很多有用的小模块,于是乎:.提取一:关键点定位与画图importcv2importdlibimportnumpyimportsysimp
- 基于开源模型搭建实时人脸识别系统(三):人脸关键点、对齐模型概览与模型选型
CodingInCV
人脸识别深度学习人工智能python计算机视觉
续基于开源模型搭建实时人脸识别系统(二):人脸检测概览与模型选型_CodingInCV的博客-CSDN博客摘要人脸对齐(facealignment)或者人脸关键点(facealignment)是定位人脸上的关键点,是很多基于人脸的任务的前置步骤,比如人脸识别、表情分析、人脸变装(makeup)等。人脸对齐有2D和3D对齐,本篇主要讲2D对齐。人脸姿态对齐:人脸识别等算法都需要对人脸的姿态进行对齐从
- 二、Face Alignment in Full Pose Range: A 3D Total Solution(3DDFA)
:)年生
pytorch人工智能
这篇论文是关于人脸对齐的文章,但是在文章中作者也进行了三维人脸重建的任务,而且之后关于人脸重建的论文也大部分都引用了这篇文章,所以来学习一下这篇论文。1.1阅读时间:2023.4.2-4.101.2背景:在过去的20年里,一系列有效的框架被提出。最近,随着级联回归和卷积神经网络的引入,人脸对齐的准确性有了显著提高。然而,大多数现有的方法是为中等姿态设计的,假设偏航角小于45◦和所有地标可见。当偏航
- 人工智能系列:以图搜图,可用于安防人像搜索
Calvin.AIAS
AIAS人工智能图像识别java
图像搜索平台介绍人像高精度搜索:人脸特征提取(使用人脸特征模型提取512维特征)前先做-人脸检测,人脸关键点提取,人脸对齐主要特性底层使用特征向量相似度搜索单台服务器十亿级数据的毫秒级搜索近实时搜索,支持分布式部署随时对数据进行插入、删除、搜索、更新等操作支持在线用户管理与服务器性能监控,支持限制单用户登录系统功能搜索管理:提供通用图像搜索,人像搜索,图像信息查看存储管理:提供图像压缩包(zip格
- AI人工智能一键图片/视频换脸-Roop
A雄
人工智能
软件介绍Roop换脸技术是一种基于深度学习的人脸图像处理技术。技术原理Roop换脸技术的实现主要分为两个步骤:人脸检测与对齐、特征融合与生成。1.人脸检测与对齐在Roop换脸技术中,首先需要对输入的图像进行人脸检测与对齐。这一步骤的目的是确保输入的两张图像中的人脸位置和角度相似,以便后续的特征融合和生成。人脸检测使用了深度学习算法,通过训练一个人脸检测器,可以自动识别图像中的人脸位置。而人脸对齐则
- 人脸识别对齐,向量搜索
qianbo_insist
pytorchpython人工智能人工智能python算法
人脸对齐的概念1查找人脸我们可以使用dlib来查找人脸,也就是所谓的侦测人脸,可以从下面github的地址去拿到models:人脸查找的modelsdnnFaceDetector=dlib.cnn_face_detection_model_v1("./mmod_human_face_detector.dat")faceRects=dnnFaceDetector(frameDlibHogSmall,
- 智慧工地解决方案,让工地进入智慧时代
英码科技
人工智能机器学习深度学习
“深元”智慧工地解决方案,为工地的安全生产和管理提供了全面、高效、智能的监管手段,涵盖以下功能模块:智慧工地实名制出入管理人脸识别和智能识别:快速检测人脸并标记出人脸坐标,提取包括脸颊、眉、眼、口、鼻等人脸五官的关键点进行人脸对齐,根据AI算法计算出人脸特征与人脸相关的属性分析,进行人脸图像特征提取。支持在各种复杂场景和不同光源的环境下,以人脸特征进行提取分析,准确完成高效、精确、稳定的人脸检测功
- C# DlibDotNet 人脸识别、人脸68特征点识别、人脸5特征点识别、人脸对齐,三角剖分,人脸特征比对
天天代码码天天
AIDlibC#人工智能C#Dlib人脸识别C#三角剖分C#人脸特征比对C#人脸68特征点识别
人脸识别人脸68特征点识别人脸5特征点识别人脸对齐三角剖分人脸特征比对项目VS2022+.net4.8+OpenCvSharp4+DlibDotNetDemo下载代码usingDlibDotNet.Extensions;usingDlibDotNet;usingSystem;usingSystem.Collections.Generic;usingSystem.ComponentModel;usi
- OpenCV/Dlib/face_recognition 人脸检测及人脸对齐
frostxxx
opencv计算机视觉深度学习
一、结果展示OpenCVDlib+face_recognitionDlib二、过程实现安装opencv在终端直接安装,清华源更快点,pipinstallopencv-python也行pipinstall-ihttps://pypi.tuna.tsinghua.edu.cn/simpleopencv-pythonopencv人脸检测确定python路径(终端输入wherepython3.9)/Use
- 人脸对齐--采用dlib库的68_face_landmark进行人脸对齐操作
沙皮狗de忧伤
学习笔记人脸检测人脸对齐dlib
简单说说人脸对齐操作的部分作用人脸对齐操作的目的就是能够把检测到的水平角度不正的人脸采用数学的方式进行角度的纠正。从而,在一定程度上提升后期人脸识别的精确度。人脸对齐操作的基本步骤人脸检测人脸关键点信息检测(眼睛,鼻子,嘴巴,下吧等…)人脸对齐人脸对齐的方法有很多,本文只是采用dlib库提供的68点关键点信息检测的模型来实现人脸对齐操作,本人能力和技术有限,代码和思路供大家参考和学习,不足之处还请
- 基于OpenCV的人脸对齐步骤详解及源码实现
阿_旭
深度学习知识点OpenCV项目实战opencvpython人工智能人脸对齐人脸识别
目录1.前言2.人脸对齐基本原理与步骤3.人脸对齐代码实现1.前言在做人脸识别的时候,前期的数据处理过程通常会遇到一个问题,需要将各种人脸从不同尺寸的图像中截取出来,再进行人脸对齐操作:即将人脸截取出来并将倾斜的人脸处理成正常的姿态。这样可以使每一个截取的人脸中的眼睛等位置处于同一位置,会对后面的识别算法起到一定的优化作用。比如,下面3张图片所示,人脸的位置、图像的大小各不一样。我们需要做的就是将
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f